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Abstract

Utilizing a nearest-neighbor research design, I find that households exposed to
green neighbors within 0.1 miles are 1.6 times more likely to make their homes
green within a year than unexposed households. The exposure also increases the
likelihood of multi-property owners certifying their faraway secondary properties
green, emphasizing that information from neighbors, not neighborhood character-
istics alone, drives the effect. While higher green home prices, electricity savings,
and regulatory incentives strengthen the peer effect, pro-environmental household
preferences do not. An information-cost-based discrete choice model explains the
findings and suggests that aligning green subsidies with peer effects can accelerate
residential green investments.
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Investments in efficient and renewable residential technologies have the potential to
reduce the energy and carbon impact of the residential sector on the environment.
Often referred to as “residential green investments”, a broader uptake of such tech-
nologies by households may play an essential role in addressing climate change, since
this sector accounts for nearly 20 percent of annual greenhouse gas (GHG) emissions
(EPA (2024)). Beyond the environmental benefits, these investments often come with
regulatory incentives, lower utility costs, and also higher house prices in somemarkets
(Dodge Data & Analytics (2020), p. 16, 22). Yet almost 98 percent of single-family
homes in the US remain non-certified for energy efficiency as of 2022. Information-
related issues amonghouseholds are cited as a key barrier limiting thewider adoption.1

These issues stem from limited awareness about opportunities for such investments,
uncertainty about the associated costs and benefits, and insufficient expertise regarding
the underlying green technologies.2 This paper is a step towards understanding how
households overcome these informational challenges to invest in residential green
technologies by utilizing their peer networks.

Peer network has been shown to be an important source of information for
households in decisions such as refinancing and mortgage repayments (Maturana
and Nickerson (2019), McCartney and Shah (2022), Gupta (2019)), property invest-
ments (Bayer, Mangum, and Roberts (2021), Bailey et al. (2018)), and consumption
(Bailey et al. (2022)). When it comes to investing in residential green technologies,
households may find their peer networks even more important due to a challenging
informational environment. First, there are no well-developed advisory markets or
intermediaries for such investments, limiting the information generally available to the
households. Second, the relatively low adoption of green technologies results in scarce
practical information, making already-adopting peers a particularly relevant source
of information. Third, such investments often receive limited attention in popular
discourse including news and media, making it harder for households to discover and
understand them. Motivated by these, I examine in this paper the causal effects of
neighbor peers on the decision of households to invest in residential green technologies
certifying their homes green.

1 See Matisoff, Noonan, and Flowers (2016), Howarth and Andersson (1993), and Ramos et al. (2015)
and Giraudet (2020).
2 Green technologies refer to the features that allow a home to meet specific environmental and
sustainability standards. These features include energy and water efficiency, durability, indoor air
quality etc. Installing them requires examining home’s geometry, construction materials, compatibility
etc., and area’s microclimate, utility tariff structure, zoning laws etc. (CEC (2008)).
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Beyond the informational environment, residential green investment decisions are
different from other household decisions commonly examined in the peer effect liter-
ature in an important manner. Decisions such as applying for mortgages, refinancing,
and financial investments are private goods, whereas the environmental benefits such
as reduced GHG emissions arising from residential green investments are public in
nature, making room for policy interventions. Utilizing a simple discrete choice
model with social interactions following Brock and Durlauf (2001), I demonstrate that
adoptions of these technologies could be widened, in line with the socially optimum
level, by designing policy interventions that take into account the socioeconomic
determinants of peer effects. In a departure from prior peer effect studies, I also use
this green investment setting to study how financial and pro-environmental motives of
households shape the peer effects.3

I begin the analysis with a theoretical discrete choice model under social interac-
tions in which households imperfectly observe neighbors’ green investment decisions.
They derive utility from adopting residential green technologies while incurring
installation and information acquisition costs. They observe neighbors’ decision
imperfectly. Households require two types of information—general information about
the technologies (awareness) and specific information about their neighborhoods and
homes. Asmore neighbor peers adopt these technologies, social interactionswith them
raise awareness of focal households about the technologies and lower their general
information costs. Furthermore, in areas where peers find that the adoptions are on
average financially beneficial, information from them also aids the focal households
with localized neighborhood- and home-specific information, reducing their specific
information costs.4 These forces result in two key implications. First, information
transmission from neighbors influences focal household’s decision to adopt the green
technologies. I refer to it as the green peer effect. Second, the peer effect is heterogeneous.
It is stronger in areas where the adoptions are financially beneficial. I test these
implications using novel data on US households’ investments in residential green
technologies.

3 Residential green investments studied in this paper are on average financially beneficial, a finding
opposite to Fowlie, Greenstone, and Wolfram (2018), who report negative returns on energy efficiency
investments undertaken by low-income households in Michigan under a subsidized program. See
Section VI.D for more details.
4 In areas where adoptions are not beneficial, neighbors convey so. Information from them is devoid
of specific information. Therefore, focal households’ cost of specific information is not reduced. See
Section I for details.
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To obtain causal estimates of neighborhood peer effects, I adopt a nearest-neighbor
research design similar to Bayer, Mangum, and Roberts (2021), Bayer et al. (2022),
McCartney and Shah (2022), and McCartney, Orellana-Li, and Zhang (2024). I
estimate the effect of residential green investment decisions of hyper-local neighbors
located within 0.1 miles on the decisions of focal households to do the same, while
adjusting for the effect of such investments occurring within the slightly broader
neighborhoods of 0.3 and 0.5 miles. While a random assignment of neighbors would
be ideal for causal inference, the nearest-neighbor design mimics a quasi-random
neighbor assignment due to the thinness of the single-family housing market. The
ability of households in this market to choose a specific property within a 0.1-mile
area—conditional on having decided to live in the slightly broader neighborhood of
0.3 and 0.5 miles—is particularly constrained due to the limited availability of for-
sale homes at the time of purchase. I argue that neighborhood sorting alone does not
explain the peer effect, since the magnitude of peer effect does not vary across areas
differing in housing supply.

This research design also mitigates the issue that the peer effect is driven by
a common exposure of neighboring households to some unobserved characteristics
(Manski (1993)). To the extent that the effect of such characteristics is continuous with
distance, the inner-outer ring comparison differences out their effect and identifies
the discontinuous jump in the decision between the rings. Adding credence to this
idea is the finding that several observable demographic and property characteristics
have been shown to remain broadly similar within 0.5-mile neighborhoods (Bayer,
Mangum, and Roberts (2021)). Furthermore, I provide direct evidence subsequently
that peer effects are not driven by neighborhood-specific unobserved characteristics by
evaluating effects of immediate neighbors on decisions of multi-property owners to
green certify their secondary properties in faraway neighborhoods.

This research design is particularly suited to isolate the key mechanism of this
paper, information transmission, from other characteristics such as race, income and
education, because while these characteristics do not vary drastically from 0.1 miles to
0.3 and 0.5miles, information transmission through neighborly social interaction likely
decays sharply over such distances.

I address the issue of measuring household investments in residential green
technologies uniformly and unambiguously, at a large scale, by assembling a novel
dataset on green certifications of single-family homes from Green Building Registry
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(GBR). The certification evaluates whether a home has features that meet specific
environmental and sustainability standards, such as energy and water efficiency,
durability, indoor air quality etc. Section II describes the process in detail. I define a
home as green certified in the quarter it receives a green certificate that shows that it is
more efficient than the average US home. This definition reflects both (i) the intention
of households to invest in residential green technologies, since the certification process
is initiated by households and requires a series of interdependent investment decisions
ranging from energy efficiency to water conservation; and (ii) the green nature of the
investment, since it implies compliance with elaborate certification standards, such as
CEC (2008).5

I measure green exposure of a focal household quarterly as the rolling sum over the
past four quarters of the number of neighbors within d = 0.1,0.3, and 0.5 miles who for
the first time green certified their homes. Using the nearest-neighbor research design,
I find that one additional green neighbor within 0.1 miles raises the probability of a
household to also become green by 1.6 times within the subsequent year, consistent
with the implications of the model. This effect is sizable relative to the reported peer
effects of 8% for property investments (Bayer, Mangum, and Roberts (2021)) and 3.3%
for refinancing (McCartney and Shah (2022)). Also it is robust to the inclusion of
granular fixed effects for spatial (zip code), temporal (year-quarter), and a host of
property and neighborhood controls.

Focal households’ imperfect observability of neighbors’ decisions gives rise to an
error term in the utility function. Assuming the error term to be Gumbel and type I
extreme value distributed, as common in discrete choice models (McFadden (1984),
Brock and Durlauf (2001)), results in a hump-shaped relation between the marginal
probability of adoption and the number of already-adopting neighbors. See Section
I for details. The data confirm this relation, indicating that as neighboring adoption
increases, the influence of neighbor peers in providing information to focal households
first strengthens—when relevant knowledge is scarce—and then diminishes once such
information becomes more widespread.

5 In Section VI.A, I provide evidence that green certifications represent real investments in homes. First,
green-certified homes are more likely than non-green-certified homes to have received building permits
within one year prior to the certification (Table IX). Second, aggregate number of certifications in a zip
code is positively correlated with residential energy tax credits, which are claimable from the Internal
Revenue Service (IRS) only for verified residential green improvements (Table X).
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I conduct a series of tests to rule out common alternative explanations. I show that
green certifications reflect real investments in homes, and the peer effect does not exist
in general non-green home improvements and is not driven by builders’ decisions.

I draw on the high granularity of the data to isolate the role of information trans-
mission from neighborhood-specific unobserved characteristics, such as contractor
availability or geo-spatial features, in driving the peer effect. I do so by focusing on
the green investments by multi-property owners (MPOs) in their secondary property
located in faraway neighborhoods. I find that the 0.1-mile green exposure of MPOs
around their primary home (where they currently live) has a positive effect on their
decision to make their secondary property green when there is high similarity (top
quartile) between their secondary property and the neighboring properties within 0.1
miles around their primary home. This effect does not exist in the bottom quartile
of the similarity. These findings emphasize that MPOs utilize information from their
immediate green neighbors to adopt green technologies in their faraway secondary
properties, and the neighborhood-specific characteristics do not play a major role in
driving the peer effect.

Two additional findings emphasize the role of information flow in driving the peer
effect. First, the focal households are more likely to choose the same green certificates,
similar investment specifications, and the same lenders as their immediate neighbors
(within 0.1 miles) compared to those slightly farther away (0.1 to 0.5 miles), shedding
light on the type of information sought by the focal households. Second, the green-
peer effect is stronger in areas with a higher strength of local community interactions,
characterized by stronger social ties and fewer non-owner-occupied properties.

As previouslymentioned, themodel predicts that the peer effect is stronger in areas
where green homes enjoy additional potential benefits. Consistent with this, I find
that the green-peer effect is stronger in counties experiencing higher house prices for
green homes and above-median number of regulatory financial incentives to invest in
residential green technologies, and also in areas that have above-median potential for
retail electricity savings (proxied by marginal prices).

I also incorporate household green preference in the model as a fundamental
idiosyncratic gain in utility from green investment, which is independent of neighbors.
This independence implies that while the number of adoptions is correlated with the
number of households with such preference, the strength of the peer effect is not.
I indeed find that the percentage of green homes in an area is positively correlated
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with the fraction of households with green preference (proxied by county-level climate
opinion and zip code-level electric vehicle usage). At the same time, the green peer
effect is not statistically different across areas with a high and low fraction of such
households. This together with the finding that peer effects are stronger in areas where
green homes enjoy potential financial benefits implies that financial benefits play a
larger role than the green preference in shaping the green peer effect.

The model also delivers a prediction regarding policy implication in presence
of peer effects. Since a focal household does not internalize its own (positive)
effect on subsequent adoption decisions of yet-to-adopt neighboring households, the
adoptions in aggregate would be lower than the level achieved by a social planner,
who internalizes this individually-non-internalized effect. This socially optimum level
can be restored by providing subsidies to households for adopting the technologies.
Further analysis of the optimal subsidy reveals that under low peer effect environment
(as prevalent currently in the US according to my empirical estimates), allocating the
subsidies to areas with stronger peer effects would deliver more bang for the buck.
I however find that the number of regulatory incentives is not higher in areas that I
estimate to have stronger peer effects.
Contribution and Related Literature: Methodologically, I build on the growing
literature that uses a nearest-neighbor research design to estimate causal neighborhood
peer effects in household decisions, such as investment properties (Bayer, Mangum,
andRoberts (2021)), relocation (Bayer et al. (2022)), refinancing (McCartney and Shah
(2022)), and home sales (McCartney, Orellana-Li, and Zhang (2024)). This paper is
the first to use a nearest-neighbor design to study causal peer effects in investments by
households in residential green technologies and yields new insights into drivers and
obstacles inwider adoption of such technologies. This paper is also the first to apply the
nearest-neighbor design on a national scale, which is a computationally intensive task.6

Moreover, beyond identifying the role of information transmission in peer effects, this
paper leverages the institutional features of housing markets to show that “keeping-
up-with-the-Joneses” motive or conspicuous consumption preferences are unlikely to
be the dominant mechanism.

My paper primarily contributes to the literature on information-induced peer
effects in household financial decisions. Peer effects have been shown in stock

6 Nearest-neighbor design in previous studies has been implemented on smaller geographies, such as
one county (McCartney and Shah (2022)), a few metropolitan statistical areas, (Bayer, Mangum, and
Roberts (2021)) or one state (Bayer et al. (2022)).
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market participation (Hong, Kubik, and Stein (2004), Brown et al. (2008)), property
investment (Bayer, Mangum, and Roberts (2021), Bailey et al. (2018)), refinancing
(Maturana andNickerson (2019), McCartney and Shah (2022)), mortgage repayments
(Gupta (2019)), and consumption (Bailey et al. (2022)). I add to this literature
by showing that households use information from their neighbor peers to make
informationally-complex decisions to adopt green technologies in their residential
properties. A few studies have documented peer effects in solar panels and residential
landscaping (Bollinger andGillingham (2012), Graziano andGillingham (2015), Rode
and Müller (2021), Bigler and Janzen (2023), Bollinger, Burkhardt, and Gillingham
(2020)), but they have necessarily done so in limited geographic contexts and limited
property and feature types. My paper however examines the green technologies
that are multidimensional and applicable to nearly all property types and differs
significantly in mechanism, empirical design and scope, and in providing a theoretical
explanation for the peer effect.7 My paper also complements Qiu, Yin, and Wang
(2016) who document spillovers in green certifications of institution-owned commer-
cial buildings. Insights from my paper are significantly distinct since households are
more likely to suffer from informational issues and financial constraints. Moreover,
my paper is related to the literature on home improvement (Montgomery (1992),
Choi, Hong, and Scheinkman (2014), Melzer (2017)) and specifically focuses on an
environmentally-focused form of home improvement.

The paper also contributes to the literature on households’ pro-environmental
decisions. While environmental concerns have been shown to influence their decisions
on retirement portfolio (Anderson and Robinson (2019)), investment portfolio (Choi,
Gao, and Jiang (2020), Fisman et al. (2023), Ilhan (2020)), and consumption (Gargano
and Rossi (2024)), this paper focuses on their decisions to invest in residential green
technologies that directly reduce GHG emissions. Literature has highlighted the
debate between pro-environmental preferences and financialmotives in driving house-

7 My paper diverges from these other papers mentioned above in several aspects. First, unlike these
papers, which document the presence of peer effects, my paper additionally provides a theoretical
explanation for the green peer effect and identifies the underlying mechanism. My paper also diverges
in focusing on the role of potential financial benefits and housing market conditions. Second, my paper
uses a nearest-neighbor design for causal estimates in a hyper-local setting, as opposed to the OLS and
IVmethods in Bollinger andGillingham (2012), Bigler and Janzen (2023), and Bollinger, Burkhardt, and
Gillingham (2020). Third, whereas my paper documents that it is information transmission rather than
“keeping-up-with-the-Joneses” motive or conspicuous consumption preferences that drives the green
peer effect, Bigler and Janzen (2023) do not discuss the underlying mechanism. Moreover, my paper
also differs from Bigler and Janzen (2023) in analyzing the role of both demand-side factors (such as
financial motives and green preferences) and supply-side factors (such as regulatory incentives).
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holds’ sustainable investments (Riedl and Smeets (2017), Hartzmark and Sussman
(2019), Barber, Morse, and Yasuda (2021), Bauer, Ruof, and Smeets (2021), Giglio et al.
(2025)). I document that investments in residential green technologies are financially
beneficial and financial motives play a larger role than green preferences in driving
peer effects.

The rest of the paper is organized as follows. Section I presents the theoretical
model. Section II describes the institutional background of residential green invest-
ments and certification, and Section III describes data and presents summary statistics.
Section IV illustrates the empirical strategy. SectionV is centered on the results. Section
VI provides supplementary results, and Section VII concludes.

I. Theoretical Framework

To illustrate the peer effect mechanism, I follow Brock and Durlauf (2001) to develop
a discrete choice model under social interactions. In the model, households incur
information cost to invest in residential green technologies and neighbor peers reduce
this cost, leading to peer effects. The implications of the model guide the subsequent
empirical analysis.

A. The Model

A household i faces a decision on whether to make investment in his or her house to
adopt green technologies gi ∈ {0,1}, where gi = 1 represents the adoption. g = (g1, . . . ,gI)

denotes the adoption choices of households of population I. g−i = (g1, . . . ,gi−1,gi+1,gI)

denotes the decisions of all households other than i. The utility of household i from
making the investment consists of three components, described in detail below:

ui(gi) = Payoffi(gi) − Costi(gi,µ
e
i (g−i)) +εi(gi). (1)

A.1. Payoff

The payoff of adopting residential green technologies (gi = 1) is an increase in
household utility arising from private monetary benefits (e.g., lower electricity bills).
Following Manski (1993), Brock and Durlauf (2001) and Brock and Durlauf (2007),
and Bhattacharya, Dupas, and Kanaya (2024), I assume this increase Πi(·) to be linear
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in household and neighborhood characteristics n = (1, . . . ,N) as follows:8

Payoffi(gi) = [Πi(·)]gi, where Πi(·) =
N∑

n=1

βnxn
i . (2)

A.2. Cost
Households incur two types of cost to adopt residential green technologies. The first is
an explicit private adoption cost CP

i (·) arising from cost of material, labor, maintenance
etc. This cost is linear in household and neighborhood characteristics:

CP
i (gi) = [Ci(·)]gi, where Ci(·) =

N∑
n=1

γnxn
i . (3)

The second type of cost is an implicit cost of acquiring information, which has been
argued to be a key barrier to the adoption (Matisoff, Noonan, and Flowers (2016),
Howarth and Andersson (1993), Ramos et al. (2015), Giraudet (2020)). It models the
idea that households would need to become aware about the technologies and assess
the potential net benefits to make the adoption decision.

This information cost consists of two components. The first component Cη
i is the

cost of becoming aware about the existence of the technologies (Xiong, Payne, and
Kinsella (2016), Rogers, Singhal, and Quinlan (2014)). This cost decreases with an
increase in the number of already-adopting neighbors through peer sensitivity term
ν1 > 0, because they act as a source of this general information for focal households.
This cost takes the following form:

Cη
i (gi,µ

e
i (g−i)) = (F1− ν1mi)gi; where mi = µ

e
i (g−i) = E[wig|X] =wim. (4)

F1 represents the cost households would need to incur to acquire the general in-
formation in the absence of peers. mi is the expectation that household i places
on the adoption decisions of all neighbor peers g−i conditional on their observable
exogenous characteristics X = (x′i , . . . ,x

′
I)
′. The cost depends on the expectations of

peers’ decisions rather than the realizations, because focal households do not fully
observe the adoption decisions of their neighbors. wi = (wi1, . . . ,wiI) is an I-dimensional
row vector identifying household i’s neighbors, such that wi j is one if household j lives
in the same neighborhood as household i and zero otherwise. Moreover, self-influence
is not allowed (wii = 0). m is an I-dimensional column vector representing expectations
of households’ adoption decisions conditional on characteristicsX .

8 This term is also similar to the private utility in Lambotte et al. (2023), individual productivity in Lee
et al. (2021), and individual effects in Boucher and Bramoullé (2020).
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The second cost component Cψ
i is incurred by households to acquire specific

information about the technologies that is idiosyncratic to their underlying home and
the broader neighborhood, in order to estimate the net realizable potential benefits.9

The already-adopting neighbor peers also play a role in reducing this cost of specific
information. As more neighbors adopt, they aid the focal household in the process to
search reliable suppliers, lenders, and appropriate technology type, lowering the cost
through peer sensitivity term ν2 > 0 as follows:

Cψ
i (gi,mi) = (F2− ν2Kami)gi. (5)

I further parameterize the cost reduction with a binary exogenous neighborhood char-
acteristic Ka, which identifies whether a neighborhood is amenable to such adoptions
and the adoptions are on average financially beneficial. If broader neighborhood is
potentially beneficial (Ka = 1), the search process of the focal household is aided by
the peer adopters, reducing the cost Cψ

i from F2 to F2− ν2mi (assumed to be positive).
However, if broader neighborhood is not potentially beneficial (Ka = 0), the search
process of the focal household stops since all peer adopters convey the true state of
the neighborhood, that is, the adoption on average is not financially beneficial. In this
case, the cost Cψ

i becomes F2, which is independent of the number of already-adopting
peers.10

To sum up, the total cost of adopting green technologies for a household i is:

Costi(gi,mi) =CP
i (gi)+Cη

i (gi,mi)+Cψ
i (gi,mi) = [Ci(·)+F1− ν1mi+F2− ν2Kami]gi. (6)

A.3. Random Utility Error εi(gi)

εi(gi) is a random utility term, independently and identically distributed across
households. εi(gi) is privately observed by focal household i at the time of the decisions
but is unobserved by the econometrician and other households. In line with the
literature on discrete choice models, I assume that εi(gi) is Gumbel and type I extreme-
value distributed (McFadden (1984), Brock and Durlauf (2001)).

9 Such localized information includes (i) the broader neighborhood characteristics such as city (or zip
code) microclimate, ground reflectivity, building zone, and utility tariffs (CEC (2008)), and contractor
availability and installation cost (Dorsey and Wolfson (2024)); and (ii) home characteristics such as
materials used in and geometry of walls, floors, attics, and roofs; HVAC and water heating systems; and
internal air circulation and leakages.
10Note that in this formulation, information cost decreases more in Ka = 1 neighborhoods than in Ka = 0
neighborhoods. Ka could alternatively be modeled as an area-dependent economy of scale enjoyed by
suppliers/contractors who pass on the benefits to households in terms of lower installation costs, and
such scale is feasible in only certain neighborhoods (Ka = 1). The implications of the model remain
unchanged under this alternative formulation and also when both the mechanisms coexist.
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Incorporating the components from equations (2) and (6) into (1) gives:

ui(gi,mi) = [Πi(·)−Ci(·)−F1−F2+ (ν1+ ν2Ka) mi]gi+εi(gi). (7)

B. Household Decision Rule and Equilibrium
Household i invests in residential green technologies when the utility from adoption
outweighs that of non-adoption, i.e., ui(1) ≥ ui(0), leading to the decision rule:

ui(1)−ui(0) = Πi(·)−Ci(·)−F1−F2+ (ν1+ ν2Ka)mi+εi(1)−εi(0) ≥ 0. (8)

Since εi(1) and εi(0) are independent and extreme-value distributed, the probability of
adoption follows a standard logistic form (McFadden (1984)):

Pr(gi = 1) =
1

1+ exp[−(Πi(·)−Ci(·)−F1−F2+ (ν1+ ν2Ka)mi)]
. (9)

We see that the probability of household i adopting green technologies is linked to the
number of its green neighbor peers mi through two sensitivity terms: ν1 and ν2Ka. First,
the peers act as a source of information by lowering the cost of becoming aware about
the green technologies (ν1mi). Second, conditional on being situated in areas where
adopting the technologies is potentially beneficial (Ka = 1), peers also lower cost of
acquiring localized neighborhood- and home-specific information (ν2Kami).11

Theprobability of adoption changeswith respect to the number of already-adopting
neighbor peers as follows:

∂Pr(gi = 1)
∂mi

= ϕ(zi)(1−ϕ(zi))(ν1+ ν2Ka) > 0, (10a)

∂2Pr(gi = 1)
∂m2

i

= ϕ(zi)(1−ϕ(zi))(1−2ϕ(zi))(ν1+ ν2Ka), (10b)

where ϕ(x) =
1

1+ exp(−x)
; and zi = Πi(·)−Ci(·)−F1−F2+ (ν1+ ν2Ka)mi

From equation (10a), the probability increases with the number of already-adopting
neighbors mi. However, the rate of increase in equation (10b) is positive when mi is
low (ϕ(zi) < 0.5) but negative when mi is high (ϕ(zi) > 0.5), leading to a hump-shaped
relation between the marginal probability of adoption and the number of already-
adopting neighbors.

I next find the equilibrium adoption m∗. Note that the expected decision E(gi)

is equal to Pr(gi = 1), because gi takes values {0,1}. Assuming that households have

11 Since F2−ν2mi is assumed to be positive, ν2 is capped, implying that financial benefits and peer effects
can increase adoption only up to a certain limit. Beyond this threshold, additional incentives do not
further impact the decision, preventing unbounded escalation.
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rational expectations about neighbors’ decisions, they correctly infer these decisions
in expectation, i.e., Ei(g j) = E(g j) for all households i and j, even though they do
not fully observe others’ decisions. By symmetry, at a self-consistent equilibrium,
E(gi) = E(g j) holds for all i and j, and this common individual expected value also
equals the expected value of the average decision for any population subset (Brock
andDurlauf (2001)). Therefore in equilibrium,m satisfies the following, and any fixed
point solutionm∗ to this system of equations is an equilibrium:

m =
1

1+ exp[−(Πi(·)−Ci(·)−F1−F2+ (ν1+ ν2Ka)Wm)]
. (11)

W is an I× I weighting matrix, where row i specifies all neighbors of household i.

C. The Role of Green Preference in Adoption of Green Technologies
I now incorporate in the model households with green preference (pi = 1). They adopt
the green technologies also for pro-environmental motives and derive joy from taking
actions related to sustainability or preventing globalwarming. Imodel such preference
as an intrinsic taste parameter or identity of the households independent of the number
of already-adopting neighbor peers. Therefore, the households with green preference
(pi = 1) receive additional utility δ from adopting green technologies as follows:12

Utility: ui(gi,mi, pi) = [Πi(·)+δpi−Ci(·)−F1−F2+ (ν1+ ν2Ka)mi]gi+εi(gi). (12)

Probability: Pr(gi = 1) =
1

1+ exp[−(Πi(·)+δpi−Ci(·)−F1−F2+ (ν1+ ν2Ka)mi)]
. (13)

This suggests that the green preference raise the probability of adoption but do not
influence the peer effect, since the peer sensitivity term (ν1 + ν2Ka) remains the same
as the case with no green preferences in equation (9).

D. Social Optimum and Policy Implications under Peer Effects
Following Brock and Durlauf (2001), I model the social planner’s objective P(g) as
a utility function over green adoption decisions of the population, consisting of a
deterministic and a random componentU(g) and ε(g) respectively:

P(g) =U(g)+ε(g). (14)

12This formulation of green preference is similar to that of prosocial preference in Bénabou and Tirole
(2006) and altruism in Andreoni (1990). If the utility gain from green preferences were modeled
alternatively to increase with the number of already-adopting neighbors, it would no longer be a pure
preference but would rather represent a utility gain driven by social or reputational concern. For
example, Bénabou and Tirole (2006) refer to the former as preference type or “identity” of the individual
whereas to the latter as payoffs from reputational concerns.
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ε(g) is assumed to follow an independent extreme-value distribution across all 2I

possible configurations of g. U(g) is the sum of individual deterministic utilities:

U(g) =
I∑
i

ui(gi,mi). (15)

By aggregating mi’s, the planner fully internalizes the total peer effect, including both
(a) the positive effect of others’ adoptions on i’s decision; and (b) the positive effect of
i’s decision on yet-to-adopt neighbors. Under decentralized optimization in equation
(8), individual households do not internalize (b). Its internalization doubles the
adoption sensitivity to neighbor peers’ decisions under planner’s decision rule (Brock
and Durlauf (2001), propositions 8 and 9):

Πi(·)−Ci(·)−F1−F2+2(ν1+ ν2Ka)mS
i +εi(1)−εi(0) ≥ 0. (16)

The corresponding equilibrium satisfies:

mS =
1

1+ exp[−(Πi(·)−Ci(·)−F1−F2+2(ν1+ ν2Ka)WmS )]
. (17)

We see that aggregate adoption remains below the socially-optimum level without
intervention by social planner. Social planner can achieve this optimum by offering
households a subsidy S i equal to the non-internalized portion of the peer effect:

S i = (ν1+ ν2Ka)mS
i . (18)

The slope of optimal subsidy with respect to peer effects can be obtained by total
differentiation of equations (17) and (18) and rearranging as follows (see Internet
Appendix A for derivation):

dS i

dν1
=

mS
i

1−2(ν1+ ν2Ka)mS
i (1−mS

i )
. (19)

Note that mS
i is a logistic function, hence 0 <mS

i < 1 and 0 <mS
i (1−mS

i ) < 0.25. Therefore
the denominator is positive so long as ν1+ν2Ka < 2. The empirical analogue of ν1+ν2Ka

is the coefficient β1 on NG(≤ 0.1 mi) in equation (22), which I estimate to be much
smaller than two in Table II. Therefore the above expression is positive regardless of
equilibrium adoptions mS

i , implying that optimal subsidy increases with peer effects
(under the current empirically estimated levels of peer effects).

E. Model Implications

The model generates the following testable implications:
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IMPLICATION 1 (Peer Effects due to Information Transmission): (i) The probability
of a focal household to adopt the green technologies increases with the number of its neighbor
peers who have already adopted the technologies—captured by ν1 in equation (9) (the green
peer effect). (ii) The relation between the marginal probability of adoption and the number of
already-adopting neighbors is hump shaped (equations (10a) and (10b)). (iii) The mechanism
underlying the green peer effect is information transmission, where neighbors reduce the cost of
information.
IMPLICATION 2 (Heterogeneity in Peer Effects due to Financial Benefits): In areas
characterized by Ka = 1, the decision sensitivity of the focal household i to its peers g−i

(through mi) to adopt green technologies increases from ν1 to (ν1 + ν2). Such areas are those
where adopting green technologies delivers additional financial benefits relative to other areas
(equation (9)).
IMPLICATION 3 (Green Adoption Decisions and Green Preferences): (i) A focal
household with green preference is more likely to adopt green technologies than a focal household
without such preference. (ii) However, the decision sensitivity of focal households to peers’
decisions (ν1+ ν2Ka) does not depend on their green preferences (equation (13)).
IMPLICATION 4 (Policy Implications in Presence of Peer Effects): When households
optimize individually, the aggregate adoptions are inefficient and below the socially-optimum
level (equations (11) and (17)). Under the current empirically estimated levels of peer effects,
the inefficiencies can be reduced by allocating more subsidies to areas with stronger peer effects,
that is, where ν1 is higher or Ka = 1 (equation (19)).

In the rest of the paper, I test these implications using a novel data on investments
in residential green technologies by US households.

II. Institutional Background
A green certificate, often referred to as a “green building certificate” or “sustainability
certification,” is an official recognition that a building or property meets specific
environmental and sustainability standards and is typically issued by recognized
organizations. Such certifications aim to assess home’s efficiency comprehensively
and accurately by requiring on-site inspections to evaluate elements such as site,
water, energy, indoor air quality, construction materials, operation, and maintenance
(Department of Energy (2010)). For example, the Home Energy Rating System
(HERS)—themost popular certification program in the US—evaluates various aspects
of a home’s energy efficiency, including insulation levels, air leakage, HVAC system
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performance, and overall energy consumption.13 As a result, meeting these standards
implies a significant investment in upgrades or remodeling of the home, making these
certifications a valid proxy for residential green investment. In Section VI.A, I provide
evidence corroborating that the certifications represent real investments in homes.
Figure 1 provides sample green certification reports of HERS andHES programs, along
with a word cloud of the contents of these reports.

[Insert Figure 1 About Here]
This paper focuses on 15 residential green certification programs across the US,

six of which are national and the rest are regional. Table IA.I of Internet Appendix
summarizes the programs by geographical coverage, attributes evaluated, and green
contractor requirements. Their focus varies widely: some, like HERS and the Home
Energy Score (HES), assess only home energy efficiency, whereas others, such as Earth
Advantage® Certifications, take a more comprehensive approach by also evaluating
environmental performance and building materials.

The annual number of certifications has grown significantly starting from 2010,
with about 1.5 million single-family properties certified as of November 2022 (Panel
A of Figure IA.1 in Internet Appendix). Panel B shows the spatial distribution of
the proportion of green-certified single-family properties across counties in 2022.
We see that counties in metropolitan areas exhibit a higher concentration of green-
certified homes. Panel A of Figure IA.2 in Internet Appendix shows the distribution
of certifications across the 15 programs, with HERS accounting for about 94% of the
certified homes. Panel B shows the relation between the estimated utility savings and
HERS scores.

The certifications provide guided information for residential investments and are
obtained typically following one of the two pathways: through a green contractor or
homeowner directed. In the first, homeowners hire a green contractor affiliated with
a certification organization. The contractor follows the set guidelines and coordinates
with an affiliated rater to certify the property after completion of the renovation. In
the second, homeowners themselves decide the renovations by specifying certification
requirements and hire a contractor to complete the renovations. Afterward, they
independently hire a rater to assess and certify the home. In summary, the certification
programs provide information that guides investments in residential green technolo-
gies. Figure IA.4 of Internet Appendix provides anecdotal examples of the processes.

13Figure IA.3 of Internet Appendix provides examples of green certification technical standards. More
technical details of HERS are available in CEC (2008).
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III. Data, Sample Construction, and Summary Statistics
A. Data

I use two main datasets: property, deed and mortgage data compiled by the Warren
Group from county records offices and green certification data from theGreen Building
Registry (GBR).14 The property data cover more than 155 million properties in the US
and contain information on their geolocations, addresses, and property characteristics
such as year built, living area, number of bedrooms, exterior materials, fuel type,
heating system etc. The deed andmortgage data contain 104million records of housing
and mortgage transactions from 2018 to 2022. They include information on sale price,
date and type; names of buyers, sellers and lenders; andmortgage type, amount, term,
interest rate etc. The GBR is the largest green certification database of residential and
commercial properties in the US containing certification records for over two million
properties as of 2022. From these records, I collected information on certification
program, type, date, score (or rating), and the reports, as well as property geolocations
and addresses.

I also draw on several other datasets. I use building permit data from Builty to
measure real investments in residential properties,15 the Home Mortgage Disclosure
Act (HMDA) data to measure mortgage patterns, and local house price index from the
Federal Housing Finance Agency. Furthermore, I use the database of state incentives
for renewables & efficiency (DSIRE) to measure regulatory green incentives. I proxy
for household green preferences using opinion data from the Yale climate opinion
maps (Howe et al. (2015)) and electric vehicle registration data from the Atlas EV hub.
I utilize socioeconomic and demographic data from the US Census and statistics of
income (SOI) from the Internal Revenue Service (IRS).

B. What is a Green-Certified Home?

I define a home as green when its assessed environmental performance under a given
green certification program exceeds that of an average US home. Since the programs
follow different methodologies to assess their performance of homes, I examine each
of the 15 certification programs and their scores (or rating categories) to identify the

14The Warren Group: https://www.thewarrengroup.com/our-data/. The Green Building Registry:
https://us.greenbuildingregistry.com/.
15This data was made available by Builty Inc. (https://www.builtydata.com/) via the Dewey Data
platform. (https://www.deweydata.io/)
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program-specific threshold for the performance of an average US home.16 Using these
thresholds, I create an indicator—Green—to take the value of one when the score
(or rating category) exceeds the respective threshold. This definition measures the
green certification status of homes uniformly across different programs. Table IA.I of
Internet Appendix provides thresholds for the scores (or rating categories) under each
program. I define a property to be green certified when it crosses the threshold under
any of the programs for the first time.

C. Sample Construction
I begin by cleaning the property transaction data broadly following Bayer, Mangum,
and Roberts (2021). I retain all properties owned by individuals (as opposed to
non-person entities). I then exclude: (i) the properties that were subdivided and
resold; (ii) transactions less than $1 or those marked non-arms-length; (iii) multiple
same-day transactions; and (iv) potential data inconsistencies, such as a transaction
occurring earlier than year built. This yields a sample of about 73.8 million single-
family properties and associated ownership tenures. I then remove properties in
counties that have no green homes over the sample period from 2018 to 2022, given
that this paper aims to evaluate peer effects of green neighbors. Using the cluster-
computing infrastructure of the University of Texas at Dallas, I create a spatial dataset
identifying the single-family properties located within 0.1, 0.3, and 0.5 miles of each of
these properties, a highly computationally demanding task. This dataset is structured
as pairs consisting of focal properties and each of the properties located within 0.5
miles. I then merge the first-ever green certification status of the properties using
geolocations and addresses. In the resulting dataset, I count for each quarter from 2018
till 2022 and for each focal property, the number of neighboring properties (owned by
individuals or otherwise) that became green for the first time within 0.1, 0.3 and 0.5
miles over the previous four quarters (inclusive of the current quarter). These counts
represent the green exposure of focal households within 0.1, 0.3 and 0.5 miles. I stack
these quarterly counts for each focal household to create a focal-household×quarter
level panel. From this panel, I remove a focal household a quarter after it becomes
green, if it does so over the sample period. This yields the baseline estimation panel of
1,037,652,080 observations from 2018 till 2022 recording certification status and green

16Consider for example, the scores under theHome Energy Score (HES) Program. A score of 5 indicates
energy efficiency equivalent to that of an average US home, 10 indicates the top ten percentile, and 1
indicates the bottom 15 percentile (Department of Energy (2024)). I therefore assign properties rated
under the HES program to be green certified (Green= 1) if their scores are higher than 5.
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exposures for focal households owning 56,546,251 unique single-family properties
across 1,632 counties.

D. Summary Statistics
Table I reports the summary statistics for the main variables. The mean of the variable
Green (=10,000) in the property×year-quarter panel is 0.004 percent, which is the
average probability of a household to make green investments in a given quarter. The
mean of the variable Green (=10,000) in the property panel is 0.0747 percent, implying
that 0.0747 percent of the households become green at a quarterly hazard rate of 0.004
percent. The average household has 0.09, 0.37 and 0.62 neighbors within a 0.1-, 0.3- and
0.5-mile ring respectively who became green within the last four quarters. A typical
single-family property in the sample was built in 1974 and has 2.49 bedrooms and a
living area of 1855.41 square feet. An average county has 3.68 green financial incentives
offered by state and county governments, and has 53.87% of adults somewhat or very
worried about global warming. The average housing density in a census tract is 2.06
residential properties per acre, and the average annual house price growth in a census
tract is 4.52%. The mean adjusted gross income per capita in a zip code is $33,960.

[Insert Table I About Here]

IV. Empirical Research Design
Attributing causal interpretation to the neighborhood peer effect faces the two key
endogeneity issues. First, households are not randomly assigned to specific neigh-
borhoods, because they may sort into neighborhoods due to factors such as prefer-
ences, income, and social networks. Second, neighborhood-level shocks may cause
households to simultaneously make similar decisions. I address these issues by
employing a nearest-neighbor research design (Bayer, Mangum, and Roberts (2021),
McCartney and Shah (2022), Towe and Lawley (2013), McCartney, Orellana-Li, and
Zhang (2024)). It estimates the effect of decisions by hyper-local neighbors located
within 0.1 miles, while controlling for the same decisions made by neighbors located
slightly away within 0.3 and 0.5 miles. I illustrate the design in Figure 2. Panels A and
B respectively show a green and non-green focal property and their green neighbors.

[Insert Figure 2 About Here]
This research design relies on two crucial assumptions. First, the assignment of the

within-0.1-mile neighbors within the slightly broader neighborhoods of 0.3 or 0.5miles
is quasi-random, an assumption that single-family housing market likely satisfies for
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two reasons. Firstly, socioeconomic characteristics including race, income, and price
growth tend to be remarkably similar within small areas, such as 0.5 miles (Bayer,
Ross, and Topa (2008), Bayer, Mangum, and Roberts (2021), Towe and Lawley (2013),
McCartney and Shah (2022), McCartney, Orellana-Li, and Zhang (2024)), indicating
an absence of household sorting within these small areas. Furthermore, I demonstrate
later that property characteristics, which are key determinants of green investments,
are also similar within 0.5 miles. Secondly, limited availability of for-sale properties
arising from the thinness of single-family housing market within such small areas
diminishes households’ ability to freely select a specific property.

The second assumption concerns information transmission among neighbors. It
assumes that social interactions are more prevalent within 0.1-mile neighborhoods
than in broader neighborhoods, since households tend to interact morewith their next-
door neighbors compared to those living slightly further away. This is an implicit
condition for finding a non-zero effect, because if neighborhood interactions were not
stronger at hyper-local geographies, the estimated effect would be zero.

A. Property Characteristics Similarity

I use the proportional difference in property characteristics to assess whether they
are similar within 0.5-mile neighborhoods. For a focal property i, the proportional
difference in characteristic c with all its neighboring properties j located within a ring
(donut) of d miles is:

Proportional Diffcid =
ci−Avg(c j) j∈[d−0.1:d]

ci
, d ∈ {0.1,0.2, . . .0.5}. (20)

The average of this difference across all properties i is plotted in Panel A of Figure 3 for
four characteristics: year built, living area (in square feet), number of bedrooms, and
building condition (measured on an ordinal scale from 1 to 6, 1 being excellent and
6 being unsound). We see that there are no jumps in the proportional difference for
any of the four characteristics as the distance from focal property increases, indicating
a high similarity among these neighboring properties.

[Insert Figure 3 About Here]

To understand the spatial difference in green exposure experienced by green (G)
and non-green focal properties (NG), I calculate the proportional difference as follows:

Proportional DiffGreen Exposure, d =
Avg
(
Exposureid

)
i∈G
−Avg

(
Exposureid

)
i∈NG

Avg
(
Exposureid

)
i∈NG

. (21)
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Here Avg is the average across i calculated separately within group G and NG;
and d ∈ {0.1,0.2, . . .0.5}.17 Panel B of Figure 3 plots this proportional difference in
green exposure with distance. We see that while it remains stable in the broader
neighborhoods of 0.2 to 0.5 miles, it rises sharply in the immediate neighborhood
of 0.1 miles. This suggests that households who make residential green investments
experience many more green neighbors in their close neighborhoods than those who
did not invest.

We see from these two plots thatwhile property characteristics largely remain stable
over immediate neighborhood, green exposure is significantly higher for green homes
than non-green homes, implying that the property characteristics alone do not drive
the green investments.

B. Regression Specification
Similar to Bayer, Mangum, and Roberts (2021), I use the following regression specifi-
cation for the nearest-neighbor research design:

Greenit = α+ β1×NG(≤ 0.1 mi) + β2×NG(≤ 0.3 mi) + β3×NG(≤ 0.5 mi) +θt+θ j+ϵit, (22)

where Greenit is an indicator that takes on a value of 10,000 if household i obtains
the first-ever green certificate for his or her property in quarter t. The key variable of
interest is the exposure a focal household i receives from immediate green neighbors
within 0.1 miles, denoted as NG(≤ 0.1 mi). Recall that it is equal to the number of
neighbors within 0.1 miles who obtained green certificates within quarters t−3 : t. The
other two exposures—NG(≤ d mi), where d ∈ {0.3,0.5}—control for effects of similar
activities occurring at wider distance rings of d = 0.3 and 0.5 miles. Since the three
exposures are measured cumulatively, that is, the exposure in outer rings are inclusive
of the inner ring, the coefficient β1 measures the additional effect of the exposure
occurring within the closest ring beyond the effect of exposures occurring in 0 to 0.5
miles. The specification includes fixed effects for spatial and temporal characteristics,
θt and θ j. The specific choices for these fixed effects vary across estimations and are
discussed along with the respective results in Section V.

17The green group G consists of all properties j which received green certification in year-quarter q. I
construct the non-green group NG by randomly drawing (with replacement), for each green property j
in year-quarter q, 50 properties that were non-green in that quarter. Indexing the combined properties
in the two groups with i, I define green exposure Exposureid of a property i over a ring of d miles as the
total number of neighboring properties within the d-mile ring that became green from (q−3) to q. Here,
q is the year-quarter a property i was assigned to its respective G or NG group, and a ring of d miles
refers to a donut of (d−0.1) to d miles, where d ∈ {0.1,0.2, . . .0.5}.
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Additionally, to account for local characteristics, I add Property controlsit and
Neighborhood controlsit to equation (22) as follows:

Greenit = α+ β1×NG(≤ 0.1 mi) + β2×NG(≤ 0.3 mi)+ β3×NG(≤ 0.5 mi)

+δ1Property controlsit +δ2Neighborhood controlsit + θt + θ j+ ϵit, (23)

where property controls include property age, living area, # bedrooms, exterior
materials, heat type and roof materials. Neighborhood controls include residential
housing density and annual housing price growth at census tract level, adjusted gross
income per person at zip code level, number of regulatory green incentive programs
and climate change concern at county level, and the proportion of green homes within
a ring d = 0.1, 0.3 and 0.5 miles. These variables are defined in Table I.

V. Results
A. Baseline Results
I begin the empirical analysis with a preliminary graphical analysis of variations
in the probability of focal households investing in residential green technologies to
certify their homes green (henceforth, green investments) with the number of green
neighbors located at different distances who became green in the last four quarters.18

Moving from left to right in Panel C of Figure 3, we see that the probability of green
investments rises with the number of green neighbors located within a given distance.
More importantly, the steeper slope of 0.1-mile line indicates that the effect of green
neighbors is stronger when they are located spatially closer to the focal households
(within 0.1 miles) than slightly farther away (in rings of 0.2, 0.3, 0.4, and 0.5 miles).
These patterns suggest that spatially closer green neighbors have stronger influence.

To quantify the effect of green neighbors, I first use a version of the specification
in equation (22) where I exclude the outer ring neighbors. Column (1) of Table II
reports the result. The coefficient on NG(≤ 0.1 mi), 0.69, represents the incremental
effect of one additional green neighbor within 0.1 miles. Equivalently, one additional
within-0.1-mile green neighbor raises the likelihood of a focal household tomake green

18Green neighbors located within d miles are defined as those who have become green in the past year,
where d is [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], and (0.4, 0.5]. The number of green neighbors is
grouped in seven bins consisting of 0, 1, [2, 5], [6, 10], [11, 15], [16, 20], and greater than 20 neighbors.
The average probability is calculated in quarter q for each bin and each distance ring d as the ratio of the
number of properties that turn green for the first time in quarter q to the total number of properties (in
the respective bin and ring) that did not become green until quarter q− 1. The mean of these average
probabilities across quarters is plotted in percentages on the y-axis. The count of neighbors over a given
distance ring is independent of the count over other rings.
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investments in a quarter by β/α = 0.692/0.318 = 2.18 times relative to that of unexposed
focal households (who have zero green neighbors within 0.1 miles). This value is
reported in the table asMarginal Effect to Hazard Ratio.

[Insert Table II About Here]
I now implement the nearest-neighbor research design following equation (22),

which incorporates green neighbors within 0.3 and 0.5 miles. The estimate in column
(2) suggests that one additional within-0.1-mile green neighbor raises the likelihood of
a focal household to make green investments in a quarter by 1.58 (= 0.329/0.208) times
in excess of the exposure from one additional green neighbor within 0.3 and 0.5 miles.19

The magnitude is sizable compared to the peer effects documented in other similar
settings, namely, 8% for housing investment decisions (Bayer, Mangum, and Roberts
(2021)) and 3.3% for refinancing decisions (McCartney and Shah (2022)). Column (3)
incorporates year-quarter and zip code fixed effects; and column (4), zip code×year-
quarter fixed effects. These specifications consistently yield similar coefficients and
hazard ratios, highlighting the robustness of the results. These findings empirically
support IMPLICATION 1 (i) of the model.

I repeat these regressions following equation (23) by adding controls for property
and neighborhood characteristics and report the results in Table IA.II of Internet
Appendix. These estimates remain qualitatively and quantitatively similar, reaffirming
the evidence of the green peer effect.

I now gauge the validity of the key assumption of the nearest-neighbor research
design, that is, neighbors within 0.1-mile area of a focal household are quasi-randomly
assigned. I rely on the idea that the ability of households to self-select into preferred
neighborhoods is relatively low in areas where housing supply is constrained. There-
fore, the assumption is more likely to hold in such neighborhoods. To do so, I re-
estimate the baseline results separately in areas below and above the median value
of Wharton Residential Land Use Regulatory Index (WRLURI) (Gyourko, Saiz, and
Summers (2008), Gyourko, Hartley, and Krimmel (2021)). The estimates in Table
IA.III of Internet Appendix consistently suggest that the green peer effect is statistically
significant in supply-constrained areas aswell, suggesting that household sorting alone
cannot explain the effect and thus supporting the validity of the assumption.

IMPLICATION1 (ii) suggests that the relation between the greenpeer effect and the
number of already-adopting neighbors is hump shaped. To test this relation, I estimate

19The regression coefficients flexibly allow estimation of alternative hazard ratios. For example, one
additional green neighbor located at 0.4miles increases the likelihood by 0.36 times (β3/α= 0.075/0.208).
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equation (22) separately in subsamples consisting of observations in the deciles of the
fraction of within-0.5-mile homes that are green. The coefficient β1 on NG(≤ 0.1 mi)
is plotted in Panel A and the associated marginal hazard ratio in Panel B of Figure 4.
The plots align with the hump-shaped relation, as predicted. Intuitively, this implies
that the peer effect increases sharply with the number of adoptions at lower levels
of adoptions. As more and more neighbors adopt, the information (about the green
technologies) becomes common knowledge, and the influence of neighbor peers in
lowering the cost of information for focal households diminishes. The effect therefore
tapers as the adoptions increase.

[Insert Figure 4 About Here]

I next undertake a series of additional tests to rule out alternative explanations and
assess the robustness of the baseline results. I first examinewhether green certifications
reflect real investments in homes by using building permits and IRS residential energy
tax credits, both of which indicate verified investments in homes. In Section VI.A,
I describe these tests in detail and find that green certificates indeed reflect real
investments. Furthermore, I confirm that the peer effect occurs in real investments
by re-estimating the baseline model for the subsample of green homes that have a
record of building permit issued within one year prior to the certification date. The
results in Table IA.IV of Internet Appendix show that the green peer effect exists in
this subsample. This rules out the concern that the green peer effect is observed only
in certifications, not in real investments.

Second, to show that the green peer effect is reflected in household investments
in green technologies, not in general home improvement, I re-estimate the baseline
model in an alternative sample consisting of only the home improvements which are
unrelated to green technologies. In Section VI.B, I show that there is no peer effect in
such non-green home improvements.

Third, I address the concern that the green peer effect simply reflects a spatial
clustering of homes constructed by the same builders who are likely to include the
same features in those homes. I re-estimate the baseline model in the subsample of
green homes which received certification more than two years after their first recorded
sale and had been issued a building permit within this time period, ensuring that it is
the household, not the builder, who initiated the green certification of the home and
made verified investments. In Section VI.C, I show that the estimate of the green peer
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effect remains similar in this subsample, indicating that builder decisions alone cannot
explain the effect.

Fourth, I emphasize the role of information in driving the peer effect (as hypoth-
esized in the model) by estimating it in a placebo sample where information from
green neighbor peers is unlikely to be valuable. This placebo sample consists of focal
households whose green exposures arise exclusively from neighbors for whom the
green certification processes revealed that their homes’ efficiency was lower than that
of an average home (inefficient green certificates). In such cases, the information role
of neighbors is diminished, and the peer effect should be negligible, if any. Indeed, I
do not find a statistically significant peer effect in this sample, as shown in Table IA.V
of Internet Appendix.

The analyses in the rest of the paper are based on the specification in column
(3) of Table II. This specification does not include controls. This choice is motivated
by the benefits and computational burden of including the granular fixed effects in
this large panel data, the stable nature of the coefficients across different fixed effects
specifications, and the reduction in the number of observations caused by the inclusion
of controls for property and neighborhood characteristics.

B. Mechanism: Information Transmission
The baseline analysis in the previous section shows the peer effects of immediate green
neighbors but does not identify the underlyingmechanism. In this section, I investigate
the information transmissionmechanism, as postulated in IMPLICATION 1 (iii) of the
model. I first analyze green investment decisions ofmulti-property owners (MPOs) for
their secondary properties, followed by peer commonalities in green decisions, and
heterogeneity in peer effects by the strength of local community interactions.

B.1. Green Investment Decisions of Multi-Property Owners
The increased probability of green investment among close neighbors could arise not
only due to information flow from neighbors, but also due to any neighborhood-
specific characteristics, such as contractor availability or geo-spatial features. Such
featuresmay not necessarily be observable to researchers, confounding the estimates of
peer effect. To mitigate this concern and to isolate the role of information flow, I focus
on decisions of focal MPOs to make green investments in their secondary properties
located faraway from their primary homes (greater than 20 miles). The idea is that
while MPOs receive informational exposure from the green neighbors located around
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their primary residence, their secondary property remains uninfluenced from primary
neighborhood-specific characteristics and shocks, except for the informational expo-
sure. This exposure is more relevant when there is similarity between the secondary
property and the primary neighbors of a focal MPO. Therefore, under information
transmissionmechanism, the green exposure in the primary neighborhoodwould raise
the likelihood of green investments in the secondary properties of MPOs when the
similarity is high.20

[Insert Table III About Here]
To test the above predictions, I estimate equation (22) in a sample of all secondary

properties of MPOs while including green exposures arising from both primary
(NG(≤ d mi)Primary Home) and secondary neighbors (NG(≤ d mi)Secondary Property) within
d = 0.1, 0.3, and 0.5 miles. Table III reports the results. We see that within-0.1-
mile green exposure from primary neighbors is statistically significant in columns (1)
and (2) where the similarity is high (top quartile) and not statistically significant in
columns (3) and (4) where the similarity is low (bottom quartile).21 These results
support information transmission mechanism and contradict the explanation that
neighborhood characteristics alone drive the peer effect.

B.2. Peer Commonalities in Green Certificates and Lenders

I further test the information transmissionmechanismby examining the commonalities
in the green investment decisions of neighbor peers that help shed light on the specific
information types being transmitted, such as green technology specifications. If focal
households receive and act on information about green decisions from neighbors, their
choices are more likely to be similar to those of their spatially closer neighbors. I
exploit the richness of the dataset to test for peer commonality in the choice of green
certification program, text description of the undertaken green investments, and choice

20The similarity is calculated as follows. I first find Gower’s distance (a similarity measure) between
MPO’s secondary property and each of the neighboring properties located within 0.1 miles of MPO’s
primary home. I then calculate the similarity as the mean across these distances for a given secondary
property. The Gower’s distance is computed based on property age, living area, exterior materials, heat
type and roof materials.
21The smaller effect of primary relative to secondary exposure is consistent with the role of general and
specific information in the model. In this case, primary exposure aids MPOs with general information
about green technologies, whereas secondary exposure aids them with specific, localized information
regarding the secondary property (see Footnote 9), equivalent to lowering Cη

i and Cψ
i respectively in

the model. Similarly, Chinco and Mayer (2016) find that MPOs’ (out-of-town second-house buyers’)
decisions are influenced by factors from both their residence and the location of their purchases.
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of lender for debt-financed green investment using the following specification:

yin jzt = α+β ×1(Dist. ≤ 0.1 mi)in jzt + θn+ θzt + ϵin jzt. (24)

yin jzt represents the similarity in the decision choices of household i during tenure n

of a property and a green neighbor j located within 0.5 miles. z represents zip code of
focal household’s property, and t represents year-quarter of focal household’s decision.
The indicator 1(Dist. ≤ 0.1 mi) is one when the distance between focal household and
neighbor is within 0.1 miles. The coefficient of interest is β. Ihe specification includes
fixed effects for focal household’s tenure θn and zip code-quarter θzt.

To test for commonality in choice of certification program, I select all green focal
households and their within-0.5-mile green neighbors and create a pair dataset at
“focal×neighbor” certificate level. I then define the outcome 1(Same Cert.) to take the
value of onewhen the certificates are the same for the focal-neighbor pair and regress it
on an indicator for within-0.1-mile neighbors. Column (1) of Table IV shows the result
for all certificates, and column (2) shows the result after excluding HERS, the most
common program. The respective coefficients indicate that focal households are 0.5
and 1.1 percentage points more likely to choose the same certification as their within-
0.1-mile neighbor peers relative to slightly farther neighbors.

[Insert Table IV About Here]

Next I examine commonality among peers in their green investments using text
similarity of the green certificate and of the description of the building permits
obtained by them within one year prior to the green certification. Text similarity of
these descriptions allowsme to directly examine the type and specification of the green
investments undertaken among neighboring households. I compute textual cosine
similarity of the descriptions of green certificates and building permits in the above
pair dataset. The steps for text analysis are provided in Section B of Internet Appendix.
The results of regressing these similarity measures following the earlier specification
are shown in columns (3) and (4). We see that green investment specifications of focal
households are more similar to those of within-0.1-mile neighbors.

For the cases where households finance green investments using mortgages,
neighbor peers could aid focal households with information regarding lender choice.
They may lower the cost of researching lenders by providing information about
availability of cheaper credit, approval probability, tailored schemes and rebates
targeted towards residential green investments etc. To shed light on this type of
information flow, I examine commonality among peers in their lender choice. I begin
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by selecting focal households and their within-0.5-mile neighbors who each took a
mortgage within 90 days before respective green certification date, in a bid to ensure
that their green investment was mortgage-financed. Furthermore, I keep only those
neighbors whose mortgage date is within one year prior to that of the focal household,
in order to ensure that the information regarding the lenders and financing is timely.
I then create a “focal×neighbor” mortgage panel and define the indicator 1(Same
Lender) to take the value of one when the pair borrows from the same lender.

The result of regressing this indicator on the indicator forwithin-0.1-mile neighbors
in column (5) shows that focal households are 9.4 percent more likely to use the
same lender as their 0.1-mile neighbors to finance green investments. Moreover, to
ensure that the commonality in lender choice is not driven by presence of a few
dominant lenders, I re-estimate the effect excluding the top three lenders (in terms of
the aggregate loan amount in mortgage applications received in a county-year). The
results in column (6) remain essentially the same. Similar peer commonality in lender
choice has been shown in refinancing (Maturana and Nickerson (2019)) and property
investing (Bayer, Mangum, and Roberts (2021)).

Taken together, the commonalities among green peers regarding certification pro-
gram, investment specification and lender choice are consistent with the information
transmission mechanism.

B.3. Heterogeneous Peer Effects: The Role of Local Community Interactions
If the information transmission is the key mechanism underlying the green-peer effect,
the effect would be more pronounced in areas where local community interactions are
stronger. I thus conduct a series of tests examining heterogeneity in peer effects by the
strength of local community interactions �. I utilize three measures based on social
ties: social connectedness index and support ratio in a zip code and social capital,
SK 2014, in a county.22 Additionally, I utilize a housing market based measure of
community interactions defined as the percentage of properties in a zip code owned for
investment purposes (McCartney and Shah (2022)). Since such investment properties
are not occupied by owners, who plan and decide residential investments, the ability of

22The social connectedness index measures the strength of connectedness using Facebook friendship
ties, and support ratio is the proportion of within-zip code friendships where the pair of friends share
a third mutual friend within the same zip code (Bailey et al. (2018), Chetty et al. (2022)). Social capital
(SK 2014) is derived from principal component analysis using the number of social organizations, voter
turnout, census response rates, and the number of non-profit organizations, excluding those with an
international approach (Rupasingha, Goetz, and Freshwater (2006), with updates).
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focal households in areaswith high fraction of investment properties to receive relevant
information from neighbor peers is hindered even though their neighboring properties
are green certified. I use the following specification for the heterogeneity tests:

Greenit = α+β11(High �)×NG(≤ 0.1 mi)+β21(High �)×NG(≤ 0.3 mi)

+β31(High �)×NG(≤ 0.5 mi)+β4NG(≤ 0.1 mi)

+β5NG(≤ 0.3 mi) +β6NG(≤ 0.5 mi) +δ1(High �) + θt + θ j+ ϵit. (25)

Here the indicator 1(High �) is equal to one for above-median levels of the measure�
of community interactions. The coefficient of interest is β1.

Table V reports the results. The positive and statistically significant β1 in columns
(1) through (3) indicates that the green-peer effect is stronger in areas with stronger
social ties. The negative and statistically significant β1 in column (4) suggests that
the green-peer effect is weaker in areas where the ability of focal households to
receive relevant information from neighbors is limited. These findings are in line
with the literature showing that interactions within a community are associated with
transmission of valuable information (Beaman (2012), Burchardi and Hassan (2013)).

[Insert Table V About Here]
In summary, all the findings in this section consistently align with the information

transmission mechanism postulated in IMPLICATION 1 (iii) of the model.

C. Financial Benefits of Green Homes and the Green-Peer Effect
I now proceed to examine IMPLICATION 2 of the model concerning heterogeneity in
green peer effects by potential financial benefits of green homes. It predicts that in areas
where green investment is associated with higher financial benefits, the green-peer
effects would be stronger. I therefore examine whether the green-peer effect is stronger
in areas where green homes fetch relatively higher financial benefits. Relatedly, I also
test whether the green-exposed households who make the green investment realize
higher financial returns relative to similarly exposed households who did not invest.

C.1. Heterogeneous Peer Effects: The Role of Potential Financial Benefits
I draw on three measures of potential financial benefits of green homes to understand
how they shape the strength of peer effect. I estimate the benefits in three ways—house
prices, electricity savings, and regulatory monetary incentives.

Regarding the first measure, house prices, I identify the counties where green
homes fetch higher prices than observationally equivalent non-green homes by sep-
arately estimating hedonic regression of house prices on property characteristics for
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each county and year as follows:23

ln(Price)it = α+β Greenit +γ Controlit + θz+ ϵit. (26)

The coefficient of interest β measures the difference in average house price of green
homes relative to non-green homes. Control variables include property age, living
area, # bedrooms, exterior materials, heat type, roof materials, an indicator of
mortgage-financed purchase, mortgage term, and mortgage interest rate. I also
include zip code fixed effects θz to account for zip code-level unobserved time-invariant
characteristics. The sample includes the green homes that were sold and purchased by
individual sellers and buyers within four years following homes’ green certification.
Panel A of Figure IA.5 in Internet Appendix shows the number of years (from 2018 to
2022) for which the coefficient β is statistically positive at the 10% level or below for
a given county. It shows a substantial regional variation in financial benefits of green
homes, in line with Dauwalter and Harris (2023). Panel B shows that 16% of county-
year observations exhibit a statistically significant positive green premium, which I
identify by the indicator 1(� exists) for use in the subsequent heterogeneity regression.

Regarding the second measure, potential electricity savings, I classify the utility
service territories that have above-median (calculated yearly)marginal retail electricity
prices as having high financial benefit by the indicator 1(� exists).24 This is because
the higher marginal prices raise attractiveness of green homes relative to non-green.
Panel B of Figure IA.2 in Internet Appendix confirms that utility savings are positively
associated with the energy efficiency score of green-certified homes.

Regarding the third measure, regulatory monetary incentives for green homes, I
identify the counties with above-median (calculated quarterly) number of county- and
state-level green incentives as having high financial benefit by the indicator 1(� exists).

23While this hedonic regression approach does not measure whether the net present value (NPV) of
the green investment is positive, it identifies the housing submarkets where the prices of green homes
are higher than non-green homes and is widely used in the literature on housing and real estate (Kahn
and Kok (2014), Aydin, Brounen, and Kok (2020), Pigman et al. (2022), Muehlenbachs, Spiller, and
Timmins (2015), Keiser and Shapiro (2019), Avenancio-León and Howard (2022)). Admittedly, while
calculating theNPV of the green investments is infeasible, I show in Section VI.D that green homes enjoy
a price premium and lower price volatility, and green home improvements deliver higher returns than
non-green home improvements.
24 I follow Borenstein and Bushnell (2022) to calculate the marginal retail electricity prices and use data
from the Energy Information Administration’s Form EIA-861 survey (EIA (various years)) and the
National Renewable Energy Laboratory’s Utility Rate Database (URDB) (National Renewable Energy
Laboratory (various years)). I exclude Texas because the Texas Public Utilities Commission stopped
updating the report cards on retail competition and summary of market share data since September
2017.
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The incentive data are from the financial incentive category of the DSIRE database. The
incentives include net metering benefits and fee reduction for solar panel installation.

[Insert Table VI About Here]
Having identified the area-time combinations where green homes fetch higher

potential financial benefits, I examine whether the green-peer effect is stronger in these
areas using specification in equation (25), where I replace the indicator 1(High �) with
the indicator for the three potential benefits, 1(� exists). Table VI reports the regression
results. The coefficients on 1(� exists) ×NG(≤ 0.1 mi) suggest that the green-peer effect
is more pronounced in the areas where the potential benefits are stronger, highlighting
that financial motives shape the peer effect in residential green investments. These
results are consistent with IMPLICATION 2 of the model.

C.2. Do Peer-induced Green Investments Deliver Higher Housing Returns?

I now examinewhether the green-exposed householdswhomake the green investment
realize higher financial returns relative to similarly exposed households who did
not invest. To do this, I create a sample of green-exposed households who green
certified their homes and similarly-green-exposed householdswho did not certify their
homes.25 I then define an indicator 1(Green)i to take the value of one for the certifying
households and zero for the non-certifying and estimate the following regression:

yi = α+β 1(Green)i+ θbuy year+ θsell year+ θgreen year+ ϵi. (27)

The coefficient of interest β estimates the difference in housing return realized by
households who made residential green investments during their ownership relative
to those who did not. The regression includes fixed effects for buy, sell and green
certification year. The outcome variable is return on housing transactions measured
as the annualized rate of return and sell residual.26 Table VII reports the results. The

25 I begin with the households who bought and sold their properties from 2018 to 2022 and create two
subsamples: those who certified their homes (compliers C) and those who did not certify their homes
over this period (non-compliers NC). C consists of all households j who green certified their homes
in a given year-quarter q during their ownership of the properties and had at least one green neighbor
within 0.1 miles in the past year. NC is constructed by randomly drawing (with replacement) 50 never-
certifying households in year-quarter q—who also had at least one green neighbor within 0.1 miles in
the past year—for every given certifying household j of year-quarter q from complier subsample C.
26The sell residuals are obtained from the following repeat-sale regression estimated separately for
each county: ln(Price)int = ain + δt + θn + 1(Non-Person Buyer)int + 1(Non-Person Seller)int + ϵint. Here
the outcome variable is the natural logarithm of transaction price occurring in year-quarter t of property
i’s n−th transaction. ain, δt and θn respectively represent fixed effects for property, year-quarter and
transaction sequence (five or more transactions are grouped together).
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estimates in columns (1) and (2) suggest that the green-exposed certifying households
earn 13.2% higher annualized transaction returns and sell at a 7.7% higher price.

[Insert Table VII About Here]
The findings in this section suggest that the information transmission under the

peer effect is value-enhancing for focal households. They also highlight the role of
financial motives in shaping the peer effect in residential green investments.

D. Green Preference and the Green-Peer Effect
The IMPLICATION 3 of the model suggests that while households with green
preference are more likely to make residential green investments, the strength of green
peer effect does not depend on their green preferences. I thus first investigate the
association between the number of green homes and two proxies of green preference,
and then examine whether the green-peer effect is heterogeneous in these proxies.
The first proxy is the fraction of the adults in a county that is somewhat or very
worried about global warming (Howe et al. (2015)) (% Climate Worried). The second
proxy is the number of EVs per household at zip code level (# EV per HH), since
environmentalists are more likely to adopt green practices (Kahn (2007)).

I use the following specification to examine the association between green homes
and proxies for green preferences:

% Green Homect = α+βGreen Prefct +γ Controlsct + θc+ θt + ϵct. (28)

The controls include house price index, per capita income, median age, the percentage
of people aged 25 and abovewith at least a college degree, and the natural logarithm of
amount of the residential energy tax credit, number of new single-family homes, and
population. The results of regressing the county- and zip code-level fraction of homes
that are green certified on%ClimateWorried and # EV per HH respectively are shown in
columns (1) and (2) of Table VIII. We see that both the proxies of green preference are
positively associated with the percentage of green homes, in line with IMPLICATION
3 (i) of the model.

[Insert Table VIII About Here]
I now examine heterogeneity in the green-peer effect by the degree of the proxies for

green preference. To do this, I follow equation (25), where 1(High �) now equals one
for observationswith above-county-year-median (above-zip code-year-median) values
of% Climate Worried (# EV per HH). Columns (3) and (4) show the regression results.
The insignificant coefficients of the interaction term indicate that the strength of the
green-peer effect is statistically not different across areaswith different degrees of green
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preferences, in line with IMPLICATION 3 (ii) of the model. This lack of heterogeneity
also suggests that the green peer effect is not driven by green preferences alone.

E. Policy Implications

IMPLICATION 4 of the model suggests that under the current empirically estimated
levels of peer effects, it is socially optimal to allocate more subsidies to areas with
stronger peer effects. Several states and local governments run incentive programs
encouraging green investments. I therefore shed light on efficiency of the spatial dis-
tribution of these programs in encouraging green investments by examining whether
more regulatory incentives are available in areas with stronger peer effects. I divide
the sample counties annually into deciles Dk, k ∈ {1,2, . . .10} of estimated peer effects
(statistically significant and positive at the 10% level or below) obtained from equation
(22) and into an insignificant group Dϕ. I then regress the number of regulatory
incentives in a county in the current year (nct) separately on each 1(Dk) in the previous
year while including the base group Dϕ using the following specification:

nct = α+β ×1(Dk)ct−1+γ Controlsct + θt + ϵct;k ∈ {1,2, . . .10}, base group: Dϕ. (29)

The controls include house price index, population in natural logarithm, per capita
income, GDP growth, median age, and the percentage of people aged 25 and above
with at least a college degree. θt represents year fixed effects.

Panel C in Figure 4 shows the regression coefficients for each decile. We see
that contrary to the model prediction, the number of regulatory incentives in higher
deciles are not significantly different from those in areas with no peer effects. I find
similar patterns using other characteristics associated with peer effects. Specifically,
the number of incentives is not correlated with two socioeconomic characteristics
associated with stronger peer effects—social connectedness and social capital, as
shown in Table IA.VI of Internet Appendix. Reducing this divergence from themodel’s
prediction by adjusting the incentive provisionmay reduce the inefficiency. The finding
suggests that the efficiency of the current distribution of the regulatory incentives in
driving green technology adoptions could be further improved.

VI. Supplementary Results

This section present additional analyses that help contextualize the main findings.
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A. Do residential green certifications represent real investments?

I first examine whether green certifications are associated with real investments in
homes by using data on building permits, which are required for non-trivial home
improvements. A building permit indicates both whether a non-trivial real investment
is made in the home and also the value of the improvement (job value), making it an
ideal measure of real investments in homes. In particular, energy-efficient upgrades
related to green technologies including solar panels, efficient HVAC systems, and
insulation of homes require a building permit. I regress a series of building permit-
related variables on an indicator taking value of one for green-certified home in a
sample of green and matched non-green homes using the following specification:27

yizt = α+β ×Greenizt +γ Controls+ θz+ θt + ϵizt. (30)

θz and θt represent zip code and year-quarter fixed effects. The regression results
are shown in Table IX. Columns (1) and (2) show that green-certified homes are
significantly more likely than non-green homes to obtain building permits within one
year prior to the certification. Additionally, columns (3) through (6) show that green
homes tend to have a higher number of building permits and job values compared to
non-green homes. Overall, the results suggest a positive relationship between green
certification and real residential investments.

[Insert Table IX About Here]
To further reassure that the certifications represent real investments in green tech-

nologies, I utilize the data on residential energy tax credits (RETCs) from IRS. These tax
credits are a direct and appropriate measure of residential green investments because
households can claim these only if they undertake verifiable green improvements to
their residences (IRS (n.d.)). Hence I examine whether the aggregate amount of tax
credits claimed by households in a zip code is associated with the percentage of homes
in the zip code that were newly green certified. I use the following specification:

yzt = α+β ×%New Green Homezt +γ Controlszt + θz+ θt + ϵzt. (31)

The controls include a series of zip code-level variables for housing market conditions
and demographic characteristics: house price index, per capita income, median age,

27The sample for these regressions is constructed as follows. The green groupG consists of all properties
i that received green certification in year-quarter t between 2018 and 2022. The non-green group NG
consists of the sample of properties selected by a random draw (with-replacement) of 50 non-green
properties for every given property i that became green in year-quarter t (thus, non-green properties
inherit the same value of t as the specific green property for which they were randomly drawn).
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the percentage of people aged 25 and above with at least a college degree, and the
natural logarithm of the number of new single-family homes and population. θz and θt

represent zip code and year fixed effects.
Table X shows the regression results. We see that one percentage point increase

in the percentage of newly green-certified homes is associated with a 7% increase in
RETC (column (1)), a $1.26 increase in RETC per household (column (2)), and a 0.039
percentage point increase in the percentage of households filing for RETC (column (3))
respectively. In all, findings utilizing building permits and RETC indicate that green
certifications are indeed associated with real investments.

[Insert Table X About Here]

B. Are the green investments just general home improvements that happen to incorporate newer,
more efficient technologies?

An alternative interpretation of the green peer effect documented in this paper
is that it merely reflects peer effects in general home improvements and is not
specific to investments in green technologies. I address this concern by examining
whether the peer effect is also present in home improvement decisions unrelated to
green technologies. I classify building permits into five categories—HVAC, roofing,
solar, windows and doors, and others. The last category includes normal kitchen
renovations, pool construction, and landscaping etc. and is classified as non-green
home improvements (Bellon et al. (2024)). I re-estimate the baselinemodel in a sample
of home improvement decisions in this category and present the results in Table XI.We
see that the peer effect does not exist for these non-green improvements, emphasizing
that the informational issues are unique to residential green technologies and neighbor
peers play a role in mitigating them.

[Insert Table XI About Here]

C. Is the green-peer effect merely a result of green clustering by builders?
An alternative mechanism for the green peer effect is that it arises from green features
and amenities incorporated not by households, but by builders who tend to construct
homes in bulkwithin a housing estate thatmay be spread across 0.1-mile area, resulting
in clustering of green homes. In this case, the peer effects cannot be attributed to
households. This concern is partly alleviated for several reasons. First, the estimation
sample only includes properties whose certification year is different from its year built
(as described in Section III), meaning that the certification is an intentional decision
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of the homeowners, not the builders. Second, a survey of builders and remodelers
highlights that the biggest obstacle to build green homes is the lack of consumer
demand (Dodge Data & Analytics (2020), p. 22–23), making it unlikely that green
homes are built primarily as a result of anticipatory construction by builders. Third, to
further address this concern, I repeat the baseline analysis by only including the green
properties with a purchase transaction occurring at least two years prior to it becoming
green and at least one building permit issued during this period. This restriction
reassures that the certification is an intentional decision of the current homeowner.
Table XII shows that the results still remain similar to the baseline results in Table II.

[Insert Table XII About Here]

D. Are investments in green technologies financially beneficial?
Even though peer effects can resolve informational issues regarding investments
in residential green technologies, a rational household would not undertake the
investments if doing so is not financially beneficial. Hence I examine whether such
investments are financially beneficial by examining the difference in (i) returns on
home improvements that are aimed at green certification and those that are not, and
(ii) the resale value of green and non-green homes.

To estimate returns on home improvement investments that are aimed at green
certification, I classify the home improvement loans that were taken within one year
prior to the certification date as “green certification-targeted”. To calculate the return, I
take the bank-assessed property value at the time of the loan as the initial book value of
the asset. I then calculate the asset’s initial market value p1 by dividing the book value
by the ratio of the median bank-assessed value to the median sale price (market value)
in the property’s zip code in the month the loan was issued. The investment amount
in this case is the loan amount c1. To find the final market value of the asset, I use
two proxies. The first proxy is the property’s sale price in the subsequent transaction
that occurs between three months and five years following the loan, adjusted for the
growth of median sale price in the zip code p2. The annualized return on investment
for the homes undergoing resale transaction is rp = [(p2− p1)/c1]1/N −1, where N is the
duration from the loan date to the transaction date measured in years. The second
proxy for the asset’s final market value is property’s assessed value in year t+ 2’s tax
return at+2, adjusted for the growth of median assessed value in the zip code.28 The

28For the assessed value, I use data from Corelogic. Owing to limited resources, I obtain this data only
for Texas.
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return on investment under this proxy is ra = (at+2−at)/c1. I then examinewhether these
returns are different for home improvements that are aimed at green certification from
those that are not. Columns (1) and (2) of Table XIII respectively show that such home
improvements earn 47.3% more in market price if the house is sold and 18.6% more in
assessed value relative to the improvements that are not aimed at green certification.

[Insert Table XIII About Here]

I next estimate the difference in resale value of green homes and observationally
equivalent non-green homes using the hedonic regression (26). Column (1) of Table
XIV shows that green homes are associated with an average 2.4% increase in the sale
value of a single-family property. A potential concern with this estimate is that the
higher price reflects the value of additional investment incurred to make the house
green. To address this, I re-estimate this equation by adding a control for home’s
assessed value assuming that tax appraisals account for all investments undertaken
in the home. Controlling for the assessed improvement and land value, column (3)
suggests that green homes fetch 4.9% higher house prices. In column (4), I examine
the difference in county-year-level standard deviation of the residuals of house prices
(unexplained by observed characteristics) for green and non-green homes. The result
suggests that house prices of green homes are less volatile relative to non-green homes,
implying that they are less risky assets.

[Insert Table XIV About Here]

Taken together, I find that investing in a green home is on average financially
beneficial and themarket prices are less volatile. My findings do not contradict those of
Fowlie, Greenstone, andWolfram (2018), who show that energy efficiency investments
under the subsidized Weatherization Assistance Program (WAP) in Michigan yielded
negative financial returns. Their empirical context is different from mine in several
crucial aspects. First, they focus on a government subsidized program targeted to
low-income households in Michigan, whereas I focus on green certification programs
available to households regardless of their income across the US. Second, the focus
of WAP is on energy efficiency, whereas that of green certifications is on broader
sustainability measures including air quality and water conservation, expanding the
scope of potential benefits of green investments. Third, the associated industry
(contractors, supplier, financier etc.) and the recognition of the value of green homes
by the market have evolved significantly since their study.
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E. Is the green-peer effect driven by “keeping-up-with-the-Joneses” motive?
“Keeping-up-with-the-Joneses” motive is a common alternative mechanism purposed
for peer effects (Abel (1990), Gali (1994), Campbell and Cochrane (1999), Hong et
al. (2014), Heimer (2016)). It hypothesizes that one acquires a product simply to
satisfy the desire to “keep up with the Joneses”, even if it lowers their overall well-
being. Several of the findings discussed previously contradict this mechanism. First,
consider the pattern in Panel A and B of Figure 4. There is a hump-shaped relation
between the green peer effect and the fraction of within 0.5-mile homes that are green.
If the peer effect were driven by this alternative motive, its strength would not decrease
with higher level of adoptions. Second, if the green investment decision were driven
by this alternative motive, the decision would be insensitive to whether doing so
is financially beneficial, making the peer effect also insensitive to potential financial
benefits of green investments. However, the results in Table VI show that the peer effect
is heterogeneous in potential financial benefits, contradicting the “keeping-up-with-
the-Joneses” motive. In all, this alternative motive appears unlikely to be the dominant
mechanism behind the peer effect.

F. Is the green-peer effect driven by conspicuous consumption utility (visual inference)?
The green-peer effect may also be driven by conspicuous consumption, where house-
holds infer the investment or consumption of their neighbors through visible obser-
vation, rather than information transmission through direct interactions (Hopkins
and Kornienko (2004), Charles, Hurst, and Roussanov (2009), Han, Hirshleifer, and
Walden (2023)). Since displaying the green certificate is not required by the programs,
the visible observation by the neighboring households is less likely. However, some
types of green technologies such as solar panels are more visible than others like
advanced insulation or energy-efficient windows, exposing the neighboring house-
holds without explicit social interactions and information transmission. To understand
this alternative mechanism, I test heterogeneity in peer effects by the degree of
conspicuousness of residential green technologies. If conspicuous consumption is the
dominant mechanism, peer effects would be stronger in areas where conspicuousness
is high. For this test, I replace the term 1(High �) in equation (25)with the census-tract-
level degree of conspicuousness of green certifications (�). Imeasure conspicuousness
in three ways and show the regression results in Table XV. In column (1) it is an
indicator equal to one for properties in census tracts with at least one solar building
permit. In column (2) it is an indicator equal to one for census-tract-year level above-
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median percentage of properties with solar building permits. In column (3), it is
an indicator equal to one for census tract-quarters that experience over the last four
quarters (inclusive of current quarter) above-median percentage of green certifications
from programs that explicitly require photovoltaic (PV) solar generation.29 All
the three interaction terms are statistically insignificant, indicating an absence of
heterogeneity in the peer effects by degree of conspicuousness of green investments.
Thus, conspicuous consumption is not the key driver of the green peer effect.

[Insert Table XV About Here]

VII. Conclusion
Informational issues among households have been argued to be a key barrier limiting
the wider adoption. In this paper I study the role of neighbors in households’ decision
to invest in residential green technologies. I build a theoretical model of peer effects
utilizing a discrete choice model under social interactions and empirically test its
predictions using highly granular nationwide data on single-family homes combined
with novel data on homes’ green certification records that allows to identify residential
green investments by households. I use a nearest-neighbor research design to draw
causal conclusion about peer effects in residential green investments. I find that
households are 1.6 times more likely to make green investments to their home for
each additional neighbor within 0.1 miles who has done so in the past year, relative
to a household with no such neighbor. I show that this influence of immediate green
neighbors also extends to focal households’ secondary properties located in faraway
neighborhoods, emphasizing that neighbors act as a source of information in focal
households’ green investment decisions. The peer effect is more pronounced in areas
where green homes enjoy financial benefits in terms of higher house prices, electricity
savings, and regulatory incentives relative to non-green homes; in contrast, it remains
similar across counties varying in households’ green preferences. Furthermore, the
housing return on homes green certified by green-exposed households is higher than
on homes that remain non-certified despite being similarly green exposed. Finally, I
find that the distribution of the number of regulatory incentives across areas does not
align with the theoretical distribution corresponding to socially optimum adoption.

29These programs are Built Green, Earth Advantage, Florida Green Building Coalition, Green Built
Homes, GreenPoint Rated, Home Energy Score, LEED for Homes, National Green Building Standard,
and Zero Energy Ready Home. Despite considering PV solar generation in its certification criteria, since
HERS accounts formore than 90% of all certifications, it is not included in this list to preserve geographic
variations in conspicuousness.
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(A) HERS Program Homes (B) HES Program

(C) Word Cloud of Certification Reports

Figure 1. Sample Green Certification Reports. This figure shows the certification reports issued by
the two most common green certification programs in the US—HERS and HES—in Panel A and B
respectively. The reports include information on property location, date of certification, and energy
profile of the home. Panel C presents a word cloud generated from the 200 most frequently used words
in the certification reports.

42



(A) Green Neighbors around a Green Focal Property

(B) Green Neighbors around a Non-green Focal
Property

Figure 2. Illustration of the Nearest-Neighbor Research Design. Panel A shows an example of a green
focal property in Dallas (pointed to by the red arrow) and the number of its green neighbors within 0.1-,
0.3- and 0.5-mile rings (shown as green dots). Panel B shows an example of a non-green focal property in
Dallas (pointed to by the red arrow) and the number of its green neighbors within 0.1-, 0.3- and 0.5-mile
rings (shown as green dots).
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Figure 3. Spatial Variation in Home Characteristics, Green Exposure, and Certification Probability.
Panel A plots the average proportional difference in property characteristics defined in equation (20).
Panel B shows the average proportional difference in green exposure defined in equation (21) of green-
certified properties (G) and non-green properties (NG). Panel C plots on the y-axis the average
probability of a household green certifying the property against the number of neighbors located within
d miles who have green certified their homes in the past year. The average probability is calculated in
quarter q for each bin (of the number of green neighbors) and for each distance ring d as the ratio of
the number of properties that are green certified for the first time in quarter q to the total number of
properties (in respective bin and ring) that have not become green until quarter q−1. The mean of these
average probabilities across quarters is plotted in percentages on the y-axis.

44



Figure 4. Green Peer Effects, Already-Adopting Neighbor Peers and Regulatory Incentives. Panel A
and B show the green peer effects estimated separately using equation (22) in each decile of the fraction
of within-0.5-mile homes that are green, and Panel C shows the relation between the levels of regulative
incentives and the strength of green peer effects. Panel A plots β1—the coefficient on NG(≤ 0.1 mi) from
equation (22)—on the y-axis. Panel B plots theMarginal Effect to Hazard Rate—the ratio of the coefficient
on NG(≤ 0.1 mi) to the regression intercept—on the y-axis. The deciles in Panel A and B are calculated
among the sample of 0.5-mile rings with at least one green home. In Panel C, the x-axis plots the deciles
of green peer effects in year t − 1. Green peer effects are measured using the separately estimated β1
for each county and year in equation (22) that is statistically significant and positive at the 10% level
or below. The relative number of county- and state-level regulatory green incentives compared to base
group—the county-year observations with zero or insignificant β1— is plotted on the y-axis.
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Table I
Summary Statistics

This table reports the summary statistics. Panel A reports the summary statistics of the property×year-
quarter level green status and green exposures. Green is an indicator that takes on a value of 10,000
(for readability) if household i obtains the first-ever green certificate for his or her property in quarter
t. NG(≤ d mi) measures how many neighbors of the household became green for the first time within
d miles to the focal property over the previous four quarters (inclusive of the current quarter), where
d ∈ {0.1,0.3,0.5}. Panel B reports the summary statistics of property characteristics. Green at the property
level is an indicator that takes on a value of 10,000 (for readability) if the property has been green certified
during the sample period. Year Built is the year in which the property was constructed. Living Area
(square feet) is the living area of the property in square feet. # Bedrooms is the number of bedrooms in
the property. Panel C reports the summary statistics of neighborhood characteristics. # Incentives is the
number of regulatory green incentives at both county and state-level. % Climate Worried measures the
percentage of population in a county who are worried about climate change. Annual Price Growth is the
annual change of the housing price index of a census tract. Housing Density is the number of residential
properties per acre in a census tract. AGI ($1,000) Per Capita is the adjusted gross income (reported in
thousands of dollars) per person at the zip code level.

Variable Obs. Mean Median Std. Dev.
Green Status and Exposures (Panel: Property×Year-Quarter)

Green (=10,000) 1,037,652,080 0.40 0 63.18
NG(≤ 0.1 mi) 1,037,652,080 0.09 0 2.92
NG(≤ 0.3 mi) 1,037,652,080 0.37 0 4.45
NG(≤ 0.5 mi) 1,037,652,080 0.62 0 5.83

Property Characteristics (Panel: Property level)
Green (=10,000) 56,546,251 7.47 0 273.12
Year Built 56,546,251 1,974.70 1,978 28.71
Living Area (square feet) 56,546,251 1,855.41 1,680 777.04
# Bedrooms 56,399,493 2.49 3 1.55

Neighborhood Characteristics (Panel: Varies)
# Incentives 21,216 3.68 3 3.49
% Climate Worried 13,056 53.87 53 7.09
Housing Density 738,043 2.06 1 3.36
Annual Price Growth (%) 1,672,032 4.52 4 8.82
AGI ($1,000) Per Capita 227,336 33.96 28 29.46
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Table II
Peer Effects of Green Neighbors on Residential Green Investments

This table reports the effect of green neighbors on the decision of a focal household to also invest in
residential green technologies. The regression specification is from equation (22). The outcome variable
Green (=10,000) is an indicator taking the value of 10,000 in the quarter a household obtains the first
green certificate for his/her property. NG(≤ d mi) is the green exposure measured as the number of
neighbors who have obtained green certificates over quarters t−3 to t and are located within a ring d =
0.1, 0.3 and 0.5 miles. Marginal Effect to Hazard Rate is equal to the ratio of the associated coefficient to
the intercept. Standard errors are clustered by zip code×year-quarter and reported in parentheses. ∗, ∗∗

and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)

(1) (2) (3) (4)
NG(≤ 0.1 mi) 0.69∗∗∗ 0.33∗∗∗ 0.37∗∗∗ 0.38∗∗∗

(0.06) (0.05) (0.05) (0.05)
NG(≤ 0.3 mi) 0.27∗∗∗ 0.23∗∗∗ 0.22∗∗∗

(0.02) (0.02) (0.02)
NG(≤ 0.5 mi) 0.08∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01)
Constant 0.32∗∗∗ 0.21∗∗∗ 0.23∗∗∗ 0.23∗∗∗

(0.01) (0.01) (0.01) (0.01)
Marginal Effect to Hazard Rate
NG(≤ 0.1 mi) 2.18*** 1.58*** 1.78*** 1.82***

(0.19) (0.28) (0.27) (0.27)

Fixed effects N N Zip code, YQ Zip code × YQ
R2 (Adj.) 0.0010 0.0014 0.0021 0.0033
Observations 1,037,652,080 1,037,652,080 1,037,652,076 1,037,641,505
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Table III
Information Transmission: Peer Effects and Multi-Property Owners

This table reports green-peer effects observed from primary home of MPOs to their secondary
properties. The sample in columns (1) and (2) includes the secondary properties in the top quartile
of similarity to their neighbors located within 0.1 miles of the primary homes. This similarity is
calculated using Gower’s distance, based on property age, living area, exterior materials, heat type
and roof materials; and in columns (3) and (4) includes those in the bottom quartile of the similarity.
The regression specification follows equation (22) and includes the green exposures from neighbors of
both primary home (NG(≤ d mi)Primary Home) and secondary property (NG(≤ d mi)Secondary Property) for all
three rings. In columns (1) and (3) the distance between the primary–secondary pairs is more than 20
miles, and in columns (2) and (4), 50 miles. All models include primary zip code, secondary zip code,
owner and year-quarter fixed effects. Standard errors are clustered by primary residence zip code×year-
quarter and secondary property zip code×year-quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote
statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Secondary Property Green (=10,000)

Secondary Property-Primary Nbrs Similarity: [Top Quartile] [Bottom Quartile]

(1) (2) (3) (4)
Primary to Secondary Distance >20 mi >50 mi >20 mi >50 mi
NG(≤ 0.1 mi)Primary Home 0.010∗∗ 0.010∗∗ -0.001 -0.001

(0.00) (0.00) (0.00) (0.00)
NG(≤ 0.1 mi)Secondary Property 0.073∗ 0.080∗ 0.035 0.036∗

(0.04) (0.05) (0.02) (0.02)
0.3- & 0.5-mi NG, Primary Home Y Y Y Y
0.3- & 0.5-mi NG, Secondary Property Y Y Y Y
Primary zip code FE Y Y Y Y
Secondary zip code FE Y Y Y Y
YQ FE Y Y Y Y
R2 (Adj.) 0.1175 0.1154 0.1039 0.0989
Observations 16,228,739 15,335,946 24,882,976 24,660,686

48



Table IV
Peer Commonalities in Choice of Certification Programs, Investment, and Lenders

This table reports the results of regressing similarity measures of green investment decisions of focal
household-neighbor pairs on an indicator for within-0.1-mile neighbors, where the omitted category
is 0.1-to-0.5-mile neighbors. The outcome variable in columns (1) and (2) is one when a focal
household×neighbor pair has the same green certificate (1(Same Cert.)); in column (3) is textual
cosine similarity of green certificates; in column (4) is textual cosine similarity of building permits;
and in columns (5) and (6) is one when a focal household×neighbor pair has the same mortgage lender
(1(Same Lender)). The indicator 1(Dist. ≤ 0.1 mi) is one when the distance between focal household
and neighbor is within 0.1 miles. The sample in column (1) includes all certificates; in column (2)
excludes the most common certificate (HERS); in column (3) includes all such neighbor pairs whose
green certificates are issued under the same program and downloadable from GBR website; in column
(4) includes all building permits obtained by the green neighbor pairs within one year prior to their own
green certification dates; in column (5) includes all lenders; and in column (6) excludes the top three
lenders in terms of loan amount requested in mortgage applications in a county-year. All regressions
include focal property’s tenure and zip code×year-quarter fixed effects. Standard errors are clustered
by focal zip code×year-quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance
at 10%, 5%, and 1% level, respectively.

Similarity in: Program Choice Investment Choice Lender Choice

Outcome: 1(Same Program) Text Cosine Similarity 1(Same Lender)

(1) (2) (3) (4) (5) (6)
Sample: [All Prog] [Ex Top Prog] [Certificate] [Bldg. Permit] [All Lender] [Ex Top 3 Lender]

1(Dist. ≤ 0.1 mi) 0.005∗∗∗ 0.011∗∗∗ 0.020∗∗∗ 0.056∗∗ 0.094∗∗∗ 0.100∗∗∗

(0.00) (0.00) (0.00) (0.02) (0.01) (0.02)
Focal tenure FE Y Y Y Y Y Y
Focal zip code × YQ FE Y Y Y Y Y Y
R2 (Adj.) 0.5228 0.5929 0.7093 0.2619 0.3817 0.3808
Observations 7,338,920 787,273 90,971 9,138,633 22,007 17,998
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Table V
Effect Heterogeneity by Strength of Local Community Interactions

This table reports the heterogeneous green-peer effects by the strength of local community interactions
using equation (25). The outcome variable Green (=10,000) is an indicator taking the value of 10,000
in the quarter a household obtains the first green certificate for his/her property. The measure of the
strength of local community interactions (�) in the four columns are respectively: social connectedness,
support ratio, social capital, and % investment properties. 1(High �) is a 0/1 indicator for observations
with above-median values of the respective characteristic �. The bottom row in the column header
denotes the level at which the median for respective characteristic � is calculated. NG(≤ d mi) is the
green exposuremeasured as the number of neighborswho have obtained green certificates over quarters
t− 3 to t and are located within a ring d = 0.1, 0.3 and 0.5 miles. All the models control for outer ring
green exposure (NG(≤ d mi)) and the respective interaction terms (1(High �) × NG(≤ d mi)). All these
variables are defined in Table I. All the models include zip code and year-quarter fixed effects. Standard
errors are clustered by zip code×year-quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical
significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)

(1) (2) (3) (4)
Characteristic �:

[Median of � calculated at:]

Social
Connectedness

[zip code]

Support
Ratio

[zip code]

Social
Capital
[county]

% Investment
Properties

[zip code × yq]
1(High �) × NG(≤ 0.1 mi) 0.387∗ 0.401∗∗∗ 0.537∗∗∗ -0.190∗

(0.22) (0.13) (0.11) (0.11)
NG(≤ 0.1 mi) 0.445∗∗∗ 0.438∗∗∗ 0.360∗∗∗ 0.554∗∗∗

(0.05) (0.05) (0.05) (0.09)
1(High �) -0.111∗∗ 0.074∗∗∗

(0.04) (0.03)
Level: 0.3- & 0.5-mi NG Y Y Y Y
Interaction: 0.3- & 0.5-mi NG Y Y Y Y
FE: zip code and YQ Y Y Y Y
R2 (Adj.) 0.0024 0.0023 0.0021 0.0021
Observations 937,546,288 1,018,429,013 1,037,652,076 1,037,652,076
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Table VI
Effect Heterogeneity by Green Home Benefits

This table reports the heterogeneous green-peer effects across counties with or without green home
benefits. The outcome variable Green (=10,000) is an indicator taking the value of 10,000 in the quarter
a household obtains the first green certificate for his/her property. The indicator 1(� exists) in column
(1) is a county×year variable taking the value of one when the coefficient on Greenit in equation (26) is
statistically significant and positive at the 10% level or below; in column (2) is a territory×year indicator
taking the value of one for above-median levels of utility service territory-level electricity prices; and
in column (3) is a county×year-quarter variable taking the value of one for above-median number of
regulatory incentives. NG(≤ d mi) is the green exposure measured as the number of neighbors who
have obtained green certificates over quarters t−3 to t and are located within a ring d = 0.1, 0.3 and 0.5
miles. All the models control for outer ring green exposure (NG(≤ d mi)) and the respective interaction
terms (1(� exists) × NG(≤ d mi)). All these variables are defined in Table I. All the models include zip
code and year-quarter fixed effects. Standard errors are clustered by zip code×year-quarter and reported
in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)

(1) (2) (3)
Benefit (�) in terms of: House Prices Electricity Prices Incentives

1(� exists) × NG(≤ 0.1 mi) 0.668∗∗∗ 0.339∗∗∗ 0.970∗∗∗

(0.24) (0.10) (0.10)
NG(≤ 0.1 mi) 0.337∗∗∗ 0.123∗ 0.359∗∗∗

(0.04) (0.06) (0.06)
1(� exists) 0.155∗∗∗ -0.081∗∗∗ -0.162∗∗∗

(0.06) (0.03) (0.04)
Level: 0.3- & 0.5-mi NG Y Y Y
Interaction: 0.3- & 0.5-mi NG Y Y Y
FE: zip code and YQ Y Y Y
R2 (Adj.) 0.0022 0.0015 0.0023
Observations 303,576,068 874,272,556 983,212,581
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Table VII
Peer-induced Green Certifications and Housing Transaction Returns

This table reports the effect of the green certification decision on the housingmarket returns of the green-
exposed households. The regression sample includes two sets of households. The first set consists of
those who obtained green certificates and have at least one green neighbor within 0.1-mile distance in
the past year at the time of certification. The second set includes randomly drawn (with replacement)
non-green but similarly exposed (i.e., at least one green neighbor within 0.1-mile distance in the past
year) households. The outcome variable in column (1) is the annualized rate of return on properties
observed to be sold by the peer-influenced households, trimming outliers greater than 200 percent. The
outcome variable in column (2) is the implied residual at the time of sale relative to expectedmarket rate
as measured by a county-level quarterly price index. The indicator (1(Green)) takes the value of 1 for
the householdswho obtain a green certificate during their tenure at the property. All themodels include
year of purchase, sale, and green certification fixed effects. Standard errors are reported in parentheses.
∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

(1) (2)
Outcome: Return Sell Residual
1(Green) 0.132∗∗∗ 0.077∗∗∗

(0.01) (0.01)
Buy year FE Y Y
Sell year FE Y Y
Green year FE Y Y
R2 (Adj.) 0.0624 0.0128
Observations 14,860 14,859
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Table VIII
Green Preference, Green Certifications, and Heterogeneous Peer Effects

Columns (1) and (2) of this table report the results of regressing the share of green homes on green
preferences. Columns (3) and (4) report the heterogeneous green-peer effects across areaswith different
degrees of green preference. The outcome variable in columns (1) and (2) is the ratio of the number
of residential properties that are green certified in a year in an area (% Green Home); and in columns
(3) and (4) is an indicator taking the value of 10,000 in the quarter a household obtains the first green
certificate for his/her property (Green (=10,000)). % Climate Worried is the percentage of adults in a
county who are worried about climate change. # EV per HH is the number of EV per household at zip
code level. Indicator 1(High �) is one for above-median area×year values of the respective characteristic
�—% Climate Worried and # EV per HH. Columns (1) and (2) include Housing mkt. & demog. controls,
which consists of the amount of the residential energy tax credit, house price index, number of new
single-family homes, population, per capita income, median age, and the percentage of people aged 25
and above with at least a college degree. NG(≤ d mi) is the green exposure measured as the number of
neighbors who have obtained green certificates over quarters t−3 to t and are located within a ring d =
0.1, 0.3 and 0.5 miles. Columns (3) and (4) include controls for 1(High �), outer ring green exposure
(NG(≤ d mi)), and the respective interaction terms (1(High �) × NG(≤ d mi)). All these variables are
defined in Table I. Standard errors are reported in parentheses, and the level of clustering is listed at the
bottom of the table. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: % Green Home Green (=10,000)

(1) (2) (3) (4)
% Climate Worried 0.047∗∗∗

(0.01)
# EV per HH 1.314∗

(0.69)
1(High % Climate Worried) × NG(≤ 0.1 mi) -0.018

(0.12)
1(High # EV per HH) × NG(≤ 0.1 mi) -0.108

(0.14)
NG(≤ 0.1 mi) 0.460∗∗∗ 0.773∗∗∗

(0.09) (0.10)
Level: 1(High �) - - Y Y
Level: 0.3- & 0.5-mi NG - - Y Y
Interaction: 0.3- & 0.5-mi NG - - Y Y
Housing mkt. & demog. controls Y Y - -
Fixed effects County, Year Zip code, Year Zip code, YQ Zip code, YQ
Clustering level County Zip code Zip code × YQ Zip code × YQ
Observation unit County Zip code Property Property
R2 (Adj.) 0.8247 0.7970 0.0020 0.0020
Observations 11,233 48,596 821,323,588 348,127,621
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Table IX
Building Permits and Green Homes

This table reports the results of regressing building permits obtained before certification on green
status of the properties. The sample consists of green properties (G) and randomly selected non-green
properties (NG). The outcome variables are: (i) an indicator that takes the value of one if household
i obtained at least one building permit for their property within the four quarters prior to year-quarter
q (in columns (1) and (2)); (ii) the number of building permits obtained within the same four-quarter
period (in columns (3) and (4)); and (iii) the job value of the building permits obtained within the
same four-quarter period (in columns (5) and (6)). Green is an indicator taking the value of one for
green certified properties. The control variables include property age, living area, # bedrooms. The
sample is constructed as follows. The green group G consists of all properties j that received green
certification in year-quarter q between 2018 and 2022. The non-green group NG consists of the sample
of properties selected by a random draw (with-replacement) of 50 non-green properties for every given
property j that became green in year-quarter q (thus, non-green properties inherit the same value of q as
the specific green property for which they were randomly drawn). Standard errors are clustered by zip
code and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level,
respectively.

Outcome: 1(Obtained Bldg. Permit) # Bldg. Permit Ln(Job Value)

(1) (2) (3) (4) (5) (6)
Green 0.591∗∗∗ 0.582∗∗∗ 1.987∗∗∗ 1.820∗∗∗ 2.172∗∗∗ 1.770∗∗∗

(0.01) (0.01) (0.04) (0.04) (0.08) (0.08)
Controls N Y N Y N Y
Zip code FE Y Y Y Y Y Y
YQ FE Y Y Y Y Y Y
Model OLS OLS PPML PPML OLS OLS
R2 (Adj.) 0.1001 0.0991 0.1498 0.1535 0.3728 0.4106
Observations 7,739,539 7,725,367 7,720,868 7,706,771 564,748 561,005
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Table X
Residential Energy Tax Credits Incentives and Green Homes

This table reports the results of regressing the residential energy tax credits (RETC) claimed by
households to the Internal Revenue Service (IRS) on residential green certifications in a zip code. The
outcome variables in column (1) through (3) are respectively zip code-level residential energy tax credit
amount in natural logarithm (Ln(ARETC)), residential energy tax credit amount per household (ARETC/#
Household), and the percentage of households filing for residential energy tax credits (RETC Households
(%)). %New Green Home is the percentage of residential properties that were newly green certified in a
zip code in a year. Control variables include zip code-level house price index, the number of new single-
family homes, population, per capita income, median age, and the percentage of people aged 25 and
above with at least a college degree. All the models include zip code and year fixed effects. Standard
errors are clustered by zip code and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance
at 10%, 5%, and 1% level, respectively.

(1) (2) (3)

Ln(ARETC)
ARETC

# Households
RETC Households (%)

% New Green Home 0.070∗∗∗ 1.263∗∗∗ 0.039∗∗∗

(0.01) (0.26) (0.01)
Housing mkt. & demog. controls Y Y Y
Fixed effects Zip code, Year Zip code, Year Zip code, Year
R2 (Adj.) 0.8567 0.6484 0.7771
Observations 148,800 189,868 189,868
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Table XI
Placebo Test: Peer Effects of Exposure to Non-Green Residential Investments

This table reports the effect of neighbors on the decision of a focal household to also invest in residential,
non-green technologies, where such investments are proxied by building permits. Using standard string
parsing methods, permits are categorized into five groups: HVAC, Roofing, Solar, Windows and Doors,
and Other. The outcome variable Non-Green (=10,000) is an indicator taking the value of 10,000 in the
quarter a focal household obtains the first building permit in the “Other” category for his/her property.
NG(≤ d mi)Non-Green is the exposure measured as the number of neighbors who have obtained building
permits in the “Other” category over quarters t − 3 to t and are located within a ring d = 0.1, 0.3 and
0.5 miles. Marginal Effect to Hazard Rate is equal to the ratio of the associated coefficient to the intercept.
Standard errors are clustered by zip code×year-quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote
statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Non-Green (=10,000)

(1) (2) (3)
NG(≤ 0.1 mi)Non-Green -0.12 -0.26 -0.73∗∗

(0.28) (0.31) (0.31)
NG(≤ 0.3 mi)Non-Green -3.16∗∗∗ -2.11∗∗∗ 0.01

(0.50) (0.54) (0.40)
NG(≤ 0.5 mi)Non-Green 3.55∗∗∗ 2.68∗∗∗ 0.75∗∗∗

(0.29) (0.30) (0.12)
Fixed effects N Zip code, YQ Zip code × YQ
R2 (Adj.) 0.0067 0.0171 0.0356
Observations 81,740,448 81,740,441 81,734,269
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Table XII
Baseline Estimates for Subsample of Green Homes with Prior Purchase

Transaction

This table shows the baseline estimates of Table II for the subsample of green homes with a known
purchase transaction that occurred at least two years prior to the date of green certification and at
least one building permit issued within this time period. The regression specification is from equation
(22). The outcome variable Green (=10,000) is an indicator taking the value of 10,000 in the quarter
a household obtains the first green certificate for his/her property. NG(≤ d mi) is the green exposure
measured as the number of neighbors who have obtained green certificates over quarters t− 3 to t and
are located within a ring d = 0.1, 0.3 and 0.5 miles. Standard errors are clustered by zip code×year-
quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level,
respectively.

Outcome: Green (=10,000)

(1) (2) (3)
NG(≤ 0.1 mi) 0.32∗∗∗ 0.36∗∗∗ 0.36∗∗∗

(0.05) (0.05) (0.05)
NG(≤ 0.3 mi) 0.18∗∗∗ 0.14∗∗∗ 0.14∗∗∗

(0.01) (0.01) (0.01)
NG(≤ 0.5 mi) 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01)
Fixed effects N Zip code, YQ Zip code × YQ
R2 (Adj.) 0.0014 0.0023 0.0033
Observations 1,037,584,050 1,037,584,046 1,037,573,475
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Table XIII
Returns of Green versus Non-Green Home Improvements

This table reports the results of regressing investments returns on green status for a sample of properties
which had home improvement loans. The outcome variable is the annualized return on house
transaction price in column (1) and return on assessed value of the property in column (2). Green is
an indicator taking the value of one for the home improvement loans that were followed by a green
certification of the underlying property within a year. The sample in column (1) includes house sales
across the US during year 2018 and 2022, and in column (2) includes homes in Texas only. Control
variables include property age, living area, # bedrooms, exterior materials, heat type, roof materials.
Standard errors are clustered by county and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical
significance at 10%, 5%, and 1% level, respectively.

Outcome: Investment Return rp ra

(1) (2)
Return calculated using: Transaction Price

(US)
Assessed Value

(TX only)
Green 0.473∗ 0.186∗∗∗

(0.27) (0.05)
Regression panel Loan Loan
Controls Y Y
Fixed effects Zip code, Year Zip code, Year
R2 (Adj.) 0.06 0.04
Observations 18,626 6,876
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Table XIV
Price and Risk of Green versus Non-Green Homes

This table reports the results of regressing house prices in natural logarithm in columns (1) through (3)
and county-year level standard deviation of residualized house prices in column (4) on green status. The
residuals are obtained from the following repeat-sale regression estimated separately for each county:
ln(Price)int = ain + δt + θn + 1(Non-Person Buyer)int + 1(Non-Person Seller)int + ϵint. Here the outcome
variable is the natural logarithm of transaction price occurring in year-quarter t of property i’s n−th
transaction. ain, δt and θn respectively represent fixed effects for property, year-quarter and transaction
sequence (five or more transactions are grouped together). Green is an indicator of the property’s green
status at the time of transaction. Green homes are restricted to those green certified within two years
prior to the transaction, while non-green homes are not certified at the time of transaction. The sample
in columns (1) and (4) includes sales by individual buyers and sellers across the US during year 2018
and 2022, whereas in columns (2) and (3) includes those in Texas. The control variables in columns
(1) to (3) include property age, living area, # bedrooms, exterior materials, heat type, roof materials,
an indicator of mortgage-financed purchase, mortgage term, and mortgage interest rate. Column (3)
includes the assessed improvement value and assessed land value as additional controls. Standard
errors are clustered at the zip code level in columns (1) through (3) and at the county level in column
(4), and are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level,
respectively.

Sample: Home Sales (US) Home Sales (TX) Home Sales (US)

(1) (2) (3) (4)
Outcome: Ln(Price) Ln(Price) Ln(Price) SD(Residual)

Green 0.024∗∗∗ 0.072∗∗∗ 0.049∗∗∗ -0.041∗∗∗

(0.00) (0.01) (0.01) (0.01)
Ln(Assessed Improv. Value) 0.352∗∗∗

(0.01)
Ln(Assessed Land Value) 0.221∗∗∗

(0.01)
Controls Y Y Y N
Zip code FE Y Y Y -
County FE - - - Y
Year FE Y Y Y Y
R2 (Adj.) 0.73 0.65 0.70 0.54
Observations 6,096,075 204,818 204,818 13,414
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Table XV
Effect Heterogeneity by Conspicuous Green Investments

This table reports the heterogeneous green-peer effects by degree of conspicuousness of green
investments. Conspicuousness � in column (1) is an indicator equal to one for properties in census
tractswith at least one solar building permit (1(Solar Permit?)); in column (2) is an indicator equal to one
for census-tract-year level above-median percentage of properties with solar building permits (1(High
Solar Permit %)); and in column (3) is an indicator equal to one for census-tract-year level above-median
percentage of green certifications from programs explicitly requiring photovoltaic (PV) solar generation
over the last four quarters (1(High Grn Bldg. w/ Solar Program %)). The programs that include PV
are Build Green, Earth Advantage, Florida Green Building Coalition, Green Built Homes, GreenPoint
Rated, Home Energy Score, LEED for Homes, National Green Building Standard, and Zero Energy
ReadyHome. Note that the HERS program is excluded from this ratio even though it considers PV solar
generation in its certification, because it dominates the certifications (94%). The outcome variable Green
(=10,000) is an indicator taking the value of 10,000 in the quarter a household obtains the first green
certificate for his/her property. NG(≤ d mi) is the green exposure measured as the number of neighbors
who have obtained green certificates over quarters t − 3 to t and are located within a ring d = 0.1, 0.3
and 0.5 miles. All the models control for outer ring green exposure (NG(≤ d mi)) and the respective
interaction terms (� ×NG(≤ d mi)). All these variables are defined in Table I. All the models include zip
code and year-quarter fixed effects. Standard errors are clustered by zip code×year-quarter and reported
in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)

(1) (2) (3)
Conspicuousness � = 1(Solar Permit?) 1(High Solar Permit %) 1(High Grn Bldg. w/

Solar Program %)
� × NG(≤ 0.1 mi) -0.105 -0.146 0.057

(0.11) (0.11) (0.38)
NG(≤ 0.1 mi) 0.422∗∗∗ 0.383∗∗∗ 0.638∗∗∗

(0.09) (0.08) (0.20)
� 0.012 0.155∗∗∗ 0.101

(0.03) (0.05) (0.15)
Level: 0.3- & 0.5-mi NG Y Y Y
Interaction:
� × 0.3- & 0.5-mi NG

Y Y Y

FE: zip code and YQ Y Y Y
R2 (Adj.) 0.0024 0.0025 0.0030
Observations 334,626,734 201,078,467 88,681,649
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Abstract
This Internet Appendix provides additional proofs, data processing, tables, and
figures supporting the main text.
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A. Derivation of Key Equations

1. Proof of Equation (19)
Total differentiation of equation (18) and rearranging gives the following:

dS i

dν1
= mS

i + (ν1+ ν2Ka)
dmS

i

dν1
. (IA.1)

From equations (11) and (16), the expected adoption rate of neighbors for household
i is given by:

mS
i =

1
1+ exp(−Zi)

, where Zi = Πi(·)−Ci(·)−F1−F2+2(ν1+ ν2Ka)mS
i . (IA.2)

Using the derivative of the logistic function and applying the chain rule, we have:
dmS

i

dν1
=

dmS
i

dZi

dZi

dν1
= mS

i (1−mS
i )
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Rearranging to solve for dmS
i

dν1
, we get:
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Substitute (IA.4) back into (IA.1):
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B. Cleaning Text Data of Green Certificates and Building Permits
Step 1: Text Extraction from Certification Reports and Building Permits
I begin by using the python package PdfReader to extract the text page by page for
the certification reports (downloaded from the GBR website) and building permit
descriptions.
Step 2: Text Pre-processing and Cleaning
To ensure consistency and remove noise, the extracted text from the certification reports
and building permit descriptions undergoes a rigorous pre-processing and cleaning
process:

• Expanding Contractions: Contractions are expanded using the python contractions
library (e.g., “can’t” is expanded to “cannot”).

• Removing URLs: URLs are identified and removed using regular expressions.

• Normalizing Numerical Expressions: Dollar signs are standardized by replacing
them with the word "dollar" while preserving the numerical value (e.g., “$2,500”
to “2,500 dollar”). Similarly, percentage signs are replaced with the text “percent”
while retaining the numerical component. Numeric ranges, such as “2–6%”, are
reformatted to a more readable form (e.g., “2 to 6 percent”).

• Removing Punctuation and Special Characters: Punctuation and special characters
are removed.

• Removing Program-Specific Phrases: Specific program names that do not contribute
to the analysis are removed using regular expressions. For instance, phrases like
“home energy score” are targeted and removed.

• Tokenization: The text is tokenized into individual words using NLTK’s
word_tokenize function.

• Removing Stopwords: Common English stopwords (e.g., “the”, “and”, “is”) are
removed using a predefined list from NLTK.

• Lemmatization: Words are lemmatized usingWordNetLemmatizer (e.g., “running”
becomes “run”).

• Frequency-Based Filtering: Words that appear frequently across all documents but
do not add significant meaning are identified and removed. Specifically, the top 10%
of the most frequent words are filtered out.
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• Reassembling Cleaned Text: After all cleaning steps, the processed words are
reassembled into single strings for each document.

Step 3: Data Preparation for Similarity Calculation
After the text has been cleaned and standardized, the following steps are undertaken
to prepare the data for similarity calculations:

• Combining Text fromMultiple Pages: For each certification report, text from the first
six pages is combined. This aggregation ensures that the most relevant content of
each document is captured comprehensively.

• Matching Records: The cleaned text data is matched with both the focal and
neighboring properties in the “focal×neighbor” certificate or permit level panel, as
constructed in Section V.B.2.

Step 4: Text Similarity Calculation
With the cleaned text data prepared, text similarity calculations for the focal and neigh-
boring property are performed using cosine similarity. A TF-IDF (Term Frequency-
InverseDocument Frequency)Vectorizer is initialized to convert the text into numerical
vectors, capturing the importance of terms in the context of each document. Cosine
similarity measures the cosine of the angle between two vectors, providing a metric of
similarity that ranges from 0 (completely dissimilar) to 1 (identical).
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C. Supplementary Figures and Tables

(A) Green Certifications and Housing Market Over Time

(B) Spatial Distribution of Green Certified Single-Family Homes

Figure IA.1. Trends in Residential Green Certification in the US. Panel A plots the number of new
green certified single-family homes, new privately-owned single-family homes authorized in permit-
issuing places, new home purchase mortgage origination and single-family home transactions in the
United States from 2009 to 2021. Green certificates and building permits are represented on the left
axis. Mortgage origination and housing transactions are plotted on the right axis. Panel B shows on the
map of the contiguous US the percentage of single-family homes in the sample counties that are green
certified as of 2022.
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(A) Distribution of Residential Green Certification Programs

(B) Utility Savings and HERS Scores

Figure IA.2. Institutional Details of Residential Green Certification Programs. Panel A shows the
number of single-family homes certified under major green certification programs as of 2022. Panel B
plots the estimated annual energy savings for different Home Energy Rating System (HERS) scores.
The data for this panel was extracted on August 17, 2024, from www.hersindex.com/hers-index/
interactive-hersindex/interactive-hersindex-inside/.
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(A) Inspection Specifications for Roof Deck above Attic

(B) Illustration of Blower Door Test

Figure IA.3. Examples of Green Certification Technical Standards. This figure shows two examples of
green certification technical standards. Panel A illustrates the specifications in inspecting the roof deck
above the attic as part of the on-site inspection procedures for California HERS Ratings. Panel B displays
an example of the blower door test inspection.
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(A) Certification Steps for Contractors under Built Green Program

(B) A Homeowner Sharing Experience of Green Certification Process

Figure IA.4. Examples of Green Certification Steps. Panel A shows an example of the steps a home
contractor needs to follow to certify a home under Built Green program. Panel B shows an example of
a post on an online forum by a homeowner sharing experience of green certification and energy rebates
(link).
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(A) Spatial Distribution of Green Certification Premium

(B) Distribution of Estimated Green Certification Premium and t-Statistics

Figure IA.5. County-Year-Level Green Certification Premium in House Prices. Panel A shows the
spatial distribution of the premiums for green-certified homes estimated for each county and year
using hedonic regressions of log transaction prices of single-family homes on property and mortgage
characteristics and zip code fixed effects. The regression equation is yit = α+β Greenit+γ Controlit+θz+ϵit.
The control variables include property age, living area, # bedrooms, exterior materials, heat type, roof
materials, a 0/1 indicator of mortgage-financed purchase, mortgage term, mortgage interest rate. The
color intensity in Panel A represents the number of years (from 2018 to 2022) for which the β is positive
and statistically significant at the 10% level or below. Panel B plots the βs and associated t-statistics
estimated in Panel A.

69



Table IA.I
Green Certification Programs

This table reports the overview of 15 green certification programs. It includes their geographic coverage,
attributes evaluated in their programs, and whether they mandate the use of green contractors under
the program. Column (4) reports the threshold scores (or rating categories) used in this paper to define
whether a property is green certified (Green) under respective programs.

Program Coverage Attributes Evaluated Green Contractors Required Green Threshold
(1) (2) (3) (4)

Built Green
King County, WA

Snohomish County, WA

Energy, Site, Water,
Indoor Air Quality,
Materials, Operation

Yes
Single-family: > 3-star
Remodeling: > 2-star,

20/20 Refit Challenge, Refit
ENERGY STAR Certified New Construction National Energy Efficiency Yes Certified

Earth Advantage® Certifications Northwest
Energy, Site, Water,
Indoor Air Quality,
Materials, Operation

Yes Certified

EarthCraft Greater Atlanta Area
Energy, Site, Water,
Indoor Air Quality,
Materials, Operation

Yes Certified

Florida Green Building Coalition Florida
Energy, Site, Water,
Indoor Air Quality,
Materials, Operation

Yes Certified

Florida Water Star
St Johns River Water
Management District

Water Not Necessary Certified

Green Built Homes North Carolina
Energy, Site, Water,

Indoor Air Quality, Materials
Yes Certified

GreenPoint Rated California
Energy, Site, Water,
Indoor Air Quality,
Materials, Operation

Not Necessary ≥ 50 points

Home Energy Rating System National Energy Efficiency Not Necessary < 100

Home Energy Score National Energy Efficiency Not Necessary > 5

LEED for Homes National
Energy, Site, Water,

Indoor Air Quality, Materials
Yes Certified

Missouri Home Energy Certification Missouri Energy Efficiency Not Necessary Certified

National Green Building Standard National
Energy, Site, Water,
Indoor Air Quality,
Materials, Operation

Yes Certified

TISH Energy Score
Minneapolis
Bloomington

Energy Efficiency Not Necessary > 85

Zero Energy Ready Home National
Energy, Water,

Indoor Air Quality
Yes Certified
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Table IA.II
Peer Effects of Green Neighbors on Residential Green Investments - Including

Controls

This table replicates column (3) of Table II by adding property and neighborhood controls following
equation (23). The sample includes observations for which all control variables have non-missing
values. The property controls include property age, living area, # bedrooms, exterior materials, heat
type and roof materials. The neighborhood controls include residential housing density and annual
housing price growth at census tract level, AGI ($1,000) per capita at zip code level, number of regulatory
green incentive programs, % climate worried at county level, and the proportion of green homes within
a ring d = 0.1, 0.3 and 0.5 miles. The property and neighborhood controls are defined in Table I. All
models include zip code and year-quarter fixed effects. Standard errors are clustered by zip code×year-
quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level,
respectively.

Outcome: Green (=10000)

(1) (2) (3) (4)
NG(≤ 0.1 mi) 0.66∗∗∗ 0.66∗∗∗ 0.47∗∗∗ 0.47∗∗∗

(0.14) (0.14) (0.12) (0.12)
NG(≤ 0.3 mi) 0.17∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.17∗∗∗

(0.02) (0.02) (0.03) (0.03)
NG(≤ 0.5 mi) 0.03∗∗∗ 0.03∗∗∗ 0.01 0.01

(0.01) (0.01) (0.01) (0.01)
Property controls N Y N Y
Neighborhood controls N N Y Y
Fixed effects Zip code, YQ Zip code, YQ Zip code, YQ Zip code, YQ
R2 (Adj.) 0.0026 0.0026 0.0028 0.0028
Observations 170,708,293 170,708,293 170,708,293 170,708,293
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Table IA.III
Peer Effects in Subsamples of High and Low Housing Supply Constraints

Columns (1) and (3) of this table show the baseline estimates of Table II in the subsample of properties
in above-median regulatory restrictiveness (potential seller’s) markets, and columns (2) and (4) shows
the same in the subsample of properties in below-median regulatory restrictiveness (potential buyer’s)
markets. The bottom row in the column header denotes the version of WRLURI. The outcome variable
Green (=10,000) is an indicator taking the value of 10,000 in the quarter a household obtains the first
green certificate for his/her property. NG(≤ d mi) is the green exposure measured as the number of
neighbors who have obtained green certificates over quarters t − 3 to t and are located within a ring
d = 0.1, 0.3 and 0.5 miles. All the models include zip code and year-quarter fixed effects. Standard
errors are clustered by zip code×year-quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical
significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)

(1) (2) (3) (4)
Housing Supply Constraints:

[WRLURI Version:]
High
[2006]

Low
[2006]

High
[2018]

Low
[2018]

NG(≤ 0.1 mi) 0.59∗∗∗ 0.57∗∗∗ 0.46∗∗∗ 0.42∗∗∗

(0.11) (0.09) (0.06) (0.08)
NG(≤ 0.3 mi) 0.23∗∗∗ 0.16∗∗∗ 0.33∗∗∗ 0.21∗∗∗

(0.02) (0.02) (0.04) (0.02)
NG(≤ 0.5 mi) 0.03∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.05∗∗∗

(0.01) (0.02) (0.01) (0.01)
Fixed effects Zip code, YQ Zip code, YQ Zip code, YQ Zip code, YQ
R2 (Adj.) 0.0032 0.0017 0.0018 0.0028
Observations 223,231,911 208,599,408 483,002,288 321,170,238
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Table IA.IV
Baseline Estimates for Subsample of Green Homes with Verified Ex-Ante

Investments

This table shows the baseline estimates of Table II for the subsample of green homes with verified
investments occurring within one year prior to the green certification date, where verified investments
are proxied by building permits. The regression specification is from equation (22). The outcome
variableGreen (=10,000) is an indicator taking the value of 10,000 in the quarter a household obtains the
first green certificate for his/her property. NG(≤ d mi) is the green exposure measured as the number of
neighborswhohave obtained green certificates over quarters t−3 to t and are locatedwithin a ring d = 0.1,
0.3 and 0.5 miles. Standard errors are clustered by zip code×year-quarter and reported in parentheses.
∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)

(1) (2) (3)
NG(≤ 0.1 mi) 0.32∗∗∗ 0.34∗∗∗ 0.34∗∗∗

(0.07) (0.07) (0.07)
NG(≤ 0.3 mi) 0.13∗∗∗ 0.10∗∗∗ 0.09∗∗∗

(0.02) (0.02) (0.02)
NG(≤ 0.5 mi) 0.02∗∗ 0.02∗∗ 0.02∗

(0.01) (0.01) (0.01)
Fixed effects N Zip code, YQ Zip code × YQ
R2 (Adj.) 0.0004 0.0007 0.0015
Observations 81,757,257 81,757,254 81,751,343
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Table IA.V
Placebo Test: Peer Effects of Exposure to Inefficient Green Certifications

This table shows the baseline estimates of Table II in a sample of focal householdswhose green exposures
arise exclusively from neighbors for whom the green certification processes revealed that their homes’
efficiency were lower than that of an average home (inefficient green certificates). The outcome variable
Green (=10,000) is an indicator taking the value of 10,000 in the quarter a focal household obtains the
first inefficient green certificate for his/her property. The green threshold for each program is defined in
Table IA.I. NG(≤ d mi)Placebo is the exposure measured as the number of neighbors who have obtained
inefficient green certificates over quarters t−3 to t and are located within a ring d = 0.1, 0.3 and 0.5 miles.
Standard errors are clustered by zip code×year-quarter and reported in parentheses. ∗, ∗∗ and ∗∗∗ denote
statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Green (=10,000)Placebo

(1) (2) (3)
NG(≤ 0.1 mi)Placebo 1.43 1.47 1.17

(2.66) (2.75) (2.81)
NG(≤ 0.3 mi)Placebo -1.60 -1.43 -1.66

(1.63) (1.71) (1.78)
NG(≤ 0.5 mi)Placebo 2.22∗ 1.20 1.05

(1.25) (1.28) (1.24)
Fixed effects N Zip code, YQ Zip code × YQ
R2 (Adj.) 0.0000 0.0023 0.0075
Observations 907,382,917 907,382,912 907,372,314
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Table IA.VI
Policy Implications: Peer Effects and Provision of Regulatory Incentives

This table reports the results of Poisson pseudo-maximum-likelihood cross-sectional regression of the
number of regulatory incentives on the strength of local community interactions. The outcome variable
in columns (1) and (2) (columns (3) and (4)) is the mean (median) of the number of county- and
state-level regulatory green incentives in a county over 2018 and 2022. Social connectedness and social
capital are defined in Section V.B.3. Housing mkt. & demog. controls are themean (median) over 2018 and
2022 of house price index, population, per capita income, GDP growth, median age, and the percentage
of people aged 25 and above with at least a college degree in columns (1) and (2) (columns (3) and
(4)). All the models include state fixed effects. Standard errors are clustered by state and reported in
parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5%, and 1% level, respectively.

Outcome: Mean # Incentives Median # Incentives

(1) (2) (3) (4)
Social Connectedness 0.007 0.009

(0.01) (0.01)
Social Capital 0.002 0.002

(0.00) (0.00)
Housing mkt. & demog. controls Y Y Y Y
State fixed effects Y Y Y Y
R2 0.4330 0.4330 0.4254 0.4254
Observations 2,514 2,514 2,514 2,514
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